What is the actual transmission probability (in %) of an electron with total energy 1.593 eV incident on a potential barrier of width 238 pm and height 3.183 eV (the potential is zero for x<0 and x>238 pm).
Q: Consider a rectangular barrier given by the potential for x 0 V(x) = 0 for xa (a) Show that the…
A:
Q: A particle is confined in an infinite potential well. If the width of the well is a, what is the…
A: The potential function of an one dimensional infinite well of width a is given as follows. V(x)=0,…
Q: Suppose that the electron in the figure, having a total energy E of 4.8 eV, approaches a barrier of…
A:
Q: An electron has a wave function Y(x) = Ce-kl/xo %3D where x0 is a constant and C = 1/Vxo is the…
A: Given, ψx= Ce-xx0=1x0e-xx0<x>=∫ψ*xψdx=1x0∫-∞∞xe-2xx0dxx=x for x>0=-x for…
Q: At time t = 0, a free particle is in a state described by the normalised wave function V(x, 0) where…
A:
Q: Given 4 = -sin(2x), find 4normatized, the normalized wave function for a 1-dimensional…
A:
Q: The wave function of free particle initially at time t=0 is given by the wave packet (x,0) =…
A:
Q: An electron has a kinetic energy of 12.6 eV. The electron is incident upon a rectangular barrier of…
A:
Q: An atom with total energy 1.84 eV, in a region with no potential energy, is incident on a barrier…
A:
Q: electron tunnels through the barrier?
A:
Q: The table gives relative values for three situations for the barrier tunneling experiment of the…
A: The probability of electron tunneling through the barrier, P=e-4Lπ(2mV-E)1/2h If the proportionality…
Q: energy of the photon?
A: Given data:Width 0.285nmn=4To find:What is the energy of the photon?Find the energies of other…
Q: Consider a particle with the following wave-function: ,xL and L and A are constants. (a) What is the…
A:
Q: An electron is trapped in a finite well. How “far” (in eV) is it from being free (that is, no longer…
A: An electron is trapped in a finite well. It is know that mass of electron(me) = 9.1 × 10-31 kg L = 1…
Q: An electron with initial kinetic energy 6.0 eV encounters a barrier with height 11.0 eV. What is the…
A: Given : Initial kinetic energy of electron = 6.0 eV barrier height = 11.0 eV To find :…
Q: In scanning tunnelling microscope the tunnelling current is proportional to the transmission…
A: Solution Given dataEnergy gap E−V=4eV=4×1.6×10−19JEnergy gap E−V=6.4×10−19JCalculate the ratio…
Q: Suppose that a qubit has a state of the form |ϕ⟩ = α |0⟩ + β |1⟩. If the probability of measuring…
A:
Q: Use the time-dependent Schroedinger equation to calculate the period (in seconds) of the…
A: Mass of particle m = 9.109 × 10− 31 kg Width of the box a = 1.2 ×10− 10 m
Q: A particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m.…
A:
What is the actual transmission probability (in %) of an electron with total energy 1.593 eV incident on a potential barrier of width 238 pm and height 3.183 eV (the potential is zero for x<0 and x>238 pm).
Step by step
Solved in 3 steps with 3 images
- The normalised wavefunction for an electron in an infinite 1D potential well of length 89 pm can be written:ψ=(-0.696 ψ2)+(0.245 i ψ9)+(g ψ4). If the state is measured, there are three possible results (i.e. it is in the n=2, 9 or 4 state). What is the probability (in %) that it is in the n=4 state?An electron has a kinetic energy of 13.3 eV. The electron is incident upon a rectangular barrier of height 21.5 eV and width 1.00 nm. If the electron absorbed all the energy of a photon of green light (with wavelength 546 nm) at the instant it reached the barrier, by what factor would the electron's probability of tunneling through the barrier increase?For a quantum particle in a scattering state as it interacts a certain potential, the general expressions for the transmission and reflection coefficients are given by T = Jtrans Jinc R = | Jref Jinc (1) where Jinc, Jref, Jtrans are probability currents corresponding to the incident, reflected, and transmitted plane waves, respectively. (a). potential For the particle incident from the left to the symmetric finite square well -Vo; a < x < a, V(x) = 0 ; elsewhere, show that B Ꭲ ; R = A A
- An electron with an energy of 8.0eV is incident on a potential barrier which is 9.2eV high and 0.25 nm wide. (a) What is the probability that the electron will pass through the barrier? (b) What is the probability that the electron will be reflected? (c) What is the wavelength of the electron before it encounters the barrier? (d) What is the wavelength of the transmitted electron?An electron is trapped in a region between two infinitely high energy barriers. In the region between the barriers the potential energy of the electron is zero. The normalized wave function of the electron in the region between the walls is ψ(x) = Asin(bx), where A=0.5nm1/2 and b=1.18nm-1. What is the probability to find the electron between x = 0.99nm and x = 1.01nm.An electron with an initial kinetic energy of 1.542 eV (in a region with 1.095 eV potential energy) is incident on a potential step (extending from x=0 to ∞) to V=2.381 eV. What is the transmission probability (in %)? FYI: If we had a travelling wave arriving at a similar potential DROP, then k1 (for x<0) would be real and the symmetry of R=(k1-k2)2/(k1+k2)2 implies reflection/transmission are the same as a potential RISE with the same energies but k1 and k2 swapped.
- = = An electron having total energy E 4.60 eV approaches a rectangular energy barrier with U■5.10 eV and L-950 pm as shown in the figure below. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero. Energy E U 0 i (a) Calculate this probability, which is the transmission coefficient. (Use 9.11 x 10-31 kg for the mass of an electron, 1.055 x 10-34] s for h, and note that there are 1.60 x 10-19 J per eV.) (b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.60-eV electron tunneling through the barrier to be one in one million? nmAn electron is trapped in an infinitely deep one-dimensional well of width 0,251 nm. Initially the electron occupies the n=4 state. Suppose the electron jumps to the ground state with the accompanying emission of photon. What is the energy of the photon?The wavefunction for a quantum particle tunnelling through a potential barrier of thickness L has the form ψ(x) = Ae−Cx in the classically forbidden region where A is a constant and C is given by C^2 = 2m(U − E) /h_bar^2 . (a) Show that this wavefunction is a solution to Schrodinger’s Equation. (b) Why is the probability of tunneling through the barrier proportional to e ^−2CL?