The rate constant k for a certain reaction is measured at two different temperatures: temperature k 74.0 °C |9.8 × 1012| 197.0 °C 9.6 × 1015| Assuming the rate constant obeys the Arrhenius equation, calculate the activation energy E̟ for this reaction. Round your answer to 2 significant digits. --0 kJ E = mol ?
The rate constant k for a certain reaction is measured at two different temperatures: temperature k 74.0 °C |9.8 × 1012| 197.0 °C 9.6 × 1015| Assuming the rate constant obeys the Arrhenius equation, calculate the activation energy E̟ for this reaction. Round your answer to 2 significant digits. --0 kJ E = mol ?
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
Practice Pack
![### Calculating the Activation Energy Using the Arrhenius Equation
**Problem Statement:**
The rate constant \( k \) for a certain reaction is measured at two different temperatures:
| Temperature (°C) | \( k \) |
|------------------|----------------------------------|
| 74.0 °C | \( 9.8 \times 10^{12} \) |
| 197.0 °C | \( 9.6 \times 10^{15} \) |
**Objective:**
Assuming the rate constant obeys the Arrhenius equation, calculate the activation energy \( E_a \) for this reaction.
**Instructions:**
1. Use the given temperatures and rate constants to calculate the activation energy.
2. Round your answer to 2 significant digits.
**Formula to Use:**
The Arrhenius equation is given by:
\[ k = A \cdot e^{-\frac{E_a}{RT}} \]
Where:
- \( k \) is the rate constant
- \( A \) is the pre-exponential factor
- \( E_a \) is the activation energy
- \( R \) is the universal gas constant (8.314 J/(mol·K))
- \( T \) is the temperature in Kelvin
To solve for \( E_a \), we use the equation:
\[ \ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \]
**Graph Explanation:**
No graphs are provided in this problem. Only tabulated data for temperatures and rate constants are given.
**Calculation Panel:**
The panel below allows you to enter your calculated value for \( E_a \) in kJ/mol.
\[ E_a = \boxed{} \ \text{kJ/mol} \]
(Use the input box for calculations and rounding utilities.)
Ensure to convert the activation energy from J/mol to kJ/mol by dividing by 1000. Finally, remember to round off to 2 significant digits.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F78fb509b-c638-46e2-bf3a-9dcc47eb2e6b%2F9867cd8c-8be9-43d2-b781-4cd4dd5bff1c%2F9beyo5_processed.png&w=3840&q=75)
Transcribed Image Text:### Calculating the Activation Energy Using the Arrhenius Equation
**Problem Statement:**
The rate constant \( k \) for a certain reaction is measured at two different temperatures:
| Temperature (°C) | \( k \) |
|------------------|----------------------------------|
| 74.0 °C | \( 9.8 \times 10^{12} \) |
| 197.0 °C | \( 9.6 \times 10^{15} \) |
**Objective:**
Assuming the rate constant obeys the Arrhenius equation, calculate the activation energy \( E_a \) for this reaction.
**Instructions:**
1. Use the given temperatures and rate constants to calculate the activation energy.
2. Round your answer to 2 significant digits.
**Formula to Use:**
The Arrhenius equation is given by:
\[ k = A \cdot e^{-\frac{E_a}{RT}} \]
Where:
- \( k \) is the rate constant
- \( A \) is the pre-exponential factor
- \( E_a \) is the activation energy
- \( R \) is the universal gas constant (8.314 J/(mol·K))
- \( T \) is the temperature in Kelvin
To solve for \( E_a \), we use the equation:
\[ \ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \]
**Graph Explanation:**
No graphs are provided in this problem. Only tabulated data for temperatures and rate constants are given.
**Calculation Panel:**
The panel below allows you to enter your calculated value for \( E_a \) in kJ/mol.
\[ E_a = \boxed{} \ \text{kJ/mol} \]
(Use the input box for calculations and rounding utilities.)
Ensure to convert the activation energy from J/mol to kJ/mol by dividing by 1000. Finally, remember to round off to 2 significant digits.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Includes step-by-step video
Trending now
This is a popular solution!
Learn your way
Includes step-by-step video
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY