The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy E =31.0 kJ/mol. If the rate constant of this reaction is 8.5 × 10° M¯'s -1 at 254.0 °C, what will the rate constant be at 336.0 °C? Round your answer to 2 significant digits.
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy E =31.0 kJ/mol. If the rate constant of this reaction is 8.5 × 10° M¯'s -1 at 254.0 °C, what will the rate constant be at 336.0 °C? Round your answer to 2 significant digits.
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![### Determining the Rate Constant Using the Arrhenius Equation
#### Problem Statement:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy \( E_a = 31.0 \, \text{kJ/mol} \). If the rate constant of this reaction is \( 8.5 \times 10^5 \, M^{-1} \cdot s^{-1} \) at \( 254.0 \, ^\circ\text{C} \), what will the rate constant be at \( 336.0 \, ^\circ\text{C} \)?
Round your answer to 2 significant digits.
#### Solution Explanation:
The Arrhenius equation is given by:
\[ k = A e^{\left(-\frac{E_a}{RT}\right)} \]
where:
- \( k \) is the rate constant,
- \( A \) is the pre-exponential factor,
- \( E_a \) is the activation energy,
- \( R \) is the universal gas constant (\( 8.314 \, \text{J/mol} \cdot \text{K} \)),
- \( T \) is the temperature in Kelvin (K).
Given data:
- \( E_a = 31.0 \, \text{kJ/mol} = 31.0 \times 10^3 \, \text{J/mol} \) (conversion from kJ to J)
- Initial Rate Constant \( k_1 = 8.5 \times 10^5 \, M^{-1} \cdot s^{-1} \) at \( T_1 = 254.0 \, ^\circ\text{C} = 527.15 \, \text{K} \) (conversion from Celsius to Kelvin)
- Final temperature \( T_2 = 336.0 \, ^\circ\text{C} = 609.15 \, \text{K} \)
The Arrhenius equation can be used in a ratio form to find the new rate constant \( k_2 \) at temperature \( T_2 \):
\[ \ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4d14289c-1f37-4de4-aad2-c9491b40287a%2F980907d6-b1af-4496-8537-9fae4266783b%2F4t0ytjw_processed.png&w=3840&q=75)
Transcribed Image Text:### Determining the Rate Constant Using the Arrhenius Equation
#### Problem Statement:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy \( E_a = 31.0 \, \text{kJ/mol} \). If the rate constant of this reaction is \( 8.5 \times 10^5 \, M^{-1} \cdot s^{-1} \) at \( 254.0 \, ^\circ\text{C} \), what will the rate constant be at \( 336.0 \, ^\circ\text{C} \)?
Round your answer to 2 significant digits.
#### Solution Explanation:
The Arrhenius equation is given by:
\[ k = A e^{\left(-\frac{E_a}{RT}\right)} \]
where:
- \( k \) is the rate constant,
- \( A \) is the pre-exponential factor,
- \( E_a \) is the activation energy,
- \( R \) is the universal gas constant (\( 8.314 \, \text{J/mol} \cdot \text{K} \)),
- \( T \) is the temperature in Kelvin (K).
Given data:
- \( E_a = 31.0 \, \text{kJ/mol} = 31.0 \times 10^3 \, \text{J/mol} \) (conversion from kJ to J)
- Initial Rate Constant \( k_1 = 8.5 \times 10^5 \, M^{-1} \cdot s^{-1} \) at \( T_1 = 254.0 \, ^\circ\text{C} = 527.15 \, \text{K} \) (conversion from Celsius to Kelvin)
- Final temperature \( T_2 = 336.0 \, ^\circ\text{C} = 609.15 \, \text{K} \)
The Arrhenius equation can be used in a ratio form to find the new rate constant \( k_2 \) at temperature \( T_2 \):
\[ \ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY