The principles of biomimicry and bioinspiration have been used to design and to engineer drug-delivery technologies that reproduce or recapitulate biological materials, for what pertains to not only their structure and chemistry but also, more importantly, their functions. In drug delivery, surface recognition and nanoscale interactions between materials and biological entities are key to the success of the delivery strategy, and the use of biological building blocks such as membrane proteins has been proposed as a way to convey targeting and shielding moieties simultaneously. One can only hope that the recent events and global attention that viruses are capturing in the scientific world will spur a renewed interest in finding ways to adapt viral features and mechanisms of action to the world of NPs. Increased focus in this field would be useful to create virus-like NPs able to circulate in the blood system, overcoming the endothelial barrier, and to deliver their therapeutic payload with high efficiency.

Human Anatomy & Physiology (11th Edition)
11th Edition
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:Elaine N. Marieb, Katja N. Hoehn
Chapter1: The Human Body: An Orientation
Section: Chapter Questions
Problem 1RQ: The correct sequence of levels forming the structural hierarchy is A. (a) organ, organ system,...
icon
Related questions
Question

question: Can you summarize and explain for me what you want to tell in the article below? When I read it myself, I do not understand exactly what is meant by the article. It would be nice if you could highlight the important points. You can use them in a figure or diagram to explain. thank you and hava a nice day :)

Article:

Biomimetic Engineering of Nanodelivery Systems: Artificial Viruses in the Making

In an effort to engineer the next generation of nanoscale vectors, scientists have moved from using inorganic components aimed at obtaining inert structures to utilizing biological building blocks that are able to convey additional functionalities to the resulting construct. To cope with the complexity of the body and to evade the multiple layers of defense that tissues and organs have, it is critical to rely on the ability of certain materials to interact with, rather than to eschew, the biology of our body. Every NP system conceived to date faces one common fate: whether injected, inhaled, ingested, or absorbed through our epithelia, all will at some point come into contact with the mixture of fluids and organic compounds that comprise the body. Under such conditions, every material reacts in a unique way according to the conditions they individually face (i.e., the tissue or body region they are in), their composition (i.e., organic or inorganic), and their physical properties (i.e., size, shape, surface charge).  Inorganic NPs can function as globular protein mimics because of their similar size, charge, shape, and surface features that can be chemically functionalized to resemble proteins. These similarities can be used in biotechnology to control virus pathways or cell receptor interactions with NPs.

Among the many attempts, the legendary accomplishments, and the epic failures, we could list thousands of different NPs, differing from one another thanks to the creative endeavors of their designers. Despite their remarkable differences and researchers’ endeavors to make them one of a kind, they all aim to achieve one goal: to deliver in a specific way one particular form of payload, while remaining as unnoticed as possible by the body’s defense mechanisms. For everyone who has made an effort to create their own version of such a silver bullet, it has come to mind that nature in its incredible variety had already invented a few ingenious solutions to this problem. In the world of nano-based drug delivery, one entity dominates as the quintessential example of precision, efficiency, and stealth: the virus. Not by chance, these two worlds share many features that span from the physical laws that govern their assembly and stability to the chemical similarities in their overall composition. 

Historically, the field of nanomedicine and the global endeavor to generate NPs for drug delivery arose from one of the greatest struggles in medicine: gene therapy. At the core of that approach was the idea that viruses could be used as Trojan horses to deliver the correct sequence of the gene into the cells that harbored the mutated copy. In order to identify the virus that offered the best delivery service, a cadre of viral strains and species were tested, adapted, and engineered to fit the aims and hit the targets. It took decades of trial and error, of progressive adjustments, and a few tragic mistakes to identify the viruses that could provide the ideal backbone to develop viral vectors able to ferry genetic cargo into the target cell.  In the midst of that global challenge, nanotechnology offered a safer and more controllable alternative: to generate bespoke structures that could replace viral vectors and do the same job, delivering a payload from the point of injection to the site of action.
 
Fast forward a few decades, and the promises made by both worlds seem to have finally become reality, with a number of active clinical trials, some clinical success stories, and a few commercial products in the market space. Interestingly, the two worlds seem to have maintained a safe distance so as to avoid any collision or dangerous proximity. Exchange of ideas between the fields of gene therapy and nanomedicine is limited, and the potential for disciplinary growth through knowledge exchange has remained elusive to scientists in both fields.  Many scientists have suggested that nanotechnologists could find inspiration in the mechanisms devised by viruses to elude immune surveillance, to overcome biological barriers, and to deliver their genetic payload with high specificity. Similarly, gene therapists would find high-tech solutions to their scalability and safety issues in looking at the new generations of biomimetic particles being generated.
 
NOTE: I sent the rest as a picture.
The principles of biomimicry and bioinspiration have been used to design and to engineer drug-delivery
technologies that reproduce or recapitulate biological materials, for what pertains to not only their
structure and chemistry but also, more importantly, their functions. In drug delivery, surface recognition
and nanoscale interactions between materials and biological entities are key to the success of the
delivery strategy, and the use of biological building blocks such as membrane proteins has been
proposed as a way to convey targeting and shielding moieties simultaneously. One can only hope that
the recent events and global attention that viruses are capturing in the scientific world will spur a
renewed interest in finding ways to adapt viral features and mechanisms of action to the world of NPs.
Increased focus in this field would be useful to create virus-like NPs able to circulate in the blood system,
overcoming the endothelial barrier, and to deliver their therapeutic payload with high efficiency.
Transcribed Image Text:The principles of biomimicry and bioinspiration have been used to design and to engineer drug-delivery technologies that reproduce or recapitulate biological materials, for what pertains to not only their structure and chemistry but also, more importantly, their functions. In drug delivery, surface recognition and nanoscale interactions between materials and biological entities are key to the success of the delivery strategy, and the use of biological building blocks such as membrane proteins has been proposed as a way to convey targeting and shielding moieties simultaneously. One can only hope that the recent events and global attention that viruses are capturing in the scientific world will spur a renewed interest in finding ways to adapt viral features and mechanisms of action to the world of NPs. Increased focus in this field would be useful to create virus-like NPs able to circulate in the blood system, overcoming the endothelial barrier, and to deliver their therapeutic payload with high efficiency.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Cell Culture
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Human Anatomy & Physiology (11th Edition)
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:
9780134580999
Author:
Elaine N. Marieb, Katja N. Hoehn
Publisher:
PEARSON
Biology 2e
Biology 2e
Biology
ISBN:
9781947172517
Author:
Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:
OpenStax
Anatomy & Physiology
Anatomy & Physiology
Biology
ISBN:
9781259398629
Author:
McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:
Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:
9780815344322
Author:
Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:
W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:
9781260159363
Author:
Martin, Terry R., Prentice-craver, Cynthia
Publisher:
McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Inquiry Into Life (16th Edition)
Biology
ISBN:
9781260231700
Author:
Sylvia S. Mader, Michael Windelspecht
Publisher:
McGraw Hill Education