The police chief believes that maintenance costs on high-mileage police vehicles are much higher than those costs for low-mileage vehicles. If high-mileage vehicles are costing too much, it may be more economical to purchase more vehicles. An analyst in the department regresses yearly maintenance costs (Y) for a sample of 200 police vehicles on each vehicle’s total mileage for the year (X). The regression equation finds: Y = $50 + .030X with a r2 of .90 What is the IV? What is the DV? If the mileage increases by one mile, what is the predicted increase in maintenance costs? If a vehicle’s mileage for the year is 50,000, what is its predicted maintenance costs? What does an r2 of .90 tell us? Is this a strong or weak correlation? How can you tell?
The police chief believes that maintenance costs on high-mileage police vehicles are much higher than those costs for low-mileage vehicles. If high-mileage vehicles are costing too much, it may be more economical to purchase more vehicles. An analyst in the department regresses yearly maintenance costs (Y) for a sample of 200 police vehicles on each vehicle’s total mileage for the year (X). The regression equation finds:
Y = $50 + .030X with a r2 of .90
What is the IV? What is the DV?
If the mileage increases by one mile, what is the predicted increase in maintenance costs?
If a vehicle’s mileage for the year is 50,000, what is its predicted maintenance costs?
What does an r2 of .90 tell us? Is this a strong or weak
Step by step
Solved in 4 steps