The initial value problem y" + 4y" + y' - 6y = -12, y(0) = 1, y'(0) = 4, y"(0) = -2 is given. If the Laplace transform of y(t) is Y(S), first find Y(S). Then using Y(s) find the solution of the given initial value problem. s3 + 8s? + 15s + 12 A. Y(S) =- s4 + 4s3 + s? - 6s · y(t) = e* - e-* - 3e2t + 2 s3 + 8s? + 15s - 12 s4+ 4s3 + s2 - 6s O B. Y(S) = - y(t) = e* - e-* - 3e + 2 s3 + 8s2 - 15s - 12 s4+ 4s3 + s2 - 6s O C. Y(S) =- y(t) = et + et. 3e-2 +2 53 + 8s2 + 15s - 12 D. Y(s) = · y(t) = et + e-* - 3e-t + 2 s + 4s3 + s2 - 6s

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The initial value problem
y" + 4y" + y' - 6y = -12, y(0) = 1, y'(0) = 4, y"(0) = -2
is given. If the Laplace transform of y(t) is Y(s), first find Y(s). Then using Y(S) find the solution of the given initial value problem.
s3 + 8s? + 15s + 12
O A. Y(S) =
, y(t) = et - e - 3e-2t + 2
%3D
s4 + 4s3 + s2 - 6s
s3 + 8s? + 15s - 12 vn -
+ 4s3 + s? - 6s
O B. Y(S) =
y(t) = et - e-3 - 3e-2t + 2
53 + 8s2 - 15s - 12
O C. Y(S) =
y(t) = et + e-3 - 3e* + 2
s4+ 4s3 + s? - 6s
s3 + 8s2 + 15s - 12
3 +s? - 6s
D. Y(S) =
y(t) = et + e - 3e- + 2
s4+4s + s
Transcribed Image Text:The initial value problem y" + 4y" + y' - 6y = -12, y(0) = 1, y'(0) = 4, y"(0) = -2 is given. If the Laplace transform of y(t) is Y(s), first find Y(s). Then using Y(S) find the solution of the given initial value problem. s3 + 8s? + 15s + 12 O A. Y(S) = , y(t) = et - e - 3e-2t + 2 %3D s4 + 4s3 + s2 - 6s s3 + 8s? + 15s - 12 vn - + 4s3 + s? - 6s O B. Y(S) = y(t) = et - e-3 - 3e-2t + 2 53 + 8s2 - 15s - 12 O C. Y(S) = y(t) = et + e-3 - 3e* + 2 s4+ 4s3 + s? - 6s s3 + 8s2 + 15s - 12 3 +s? - 6s D. Y(S) = y(t) = et + e - 3e- + 2 s4+4s + s
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,