Consider the following initial value problem. y" + 8y' + 25y = 8(t – n) + 8(t – 7x), y(0) = 1, y'(0) = 0 Find the Laplace transform of the differential equation. (Write your answer as a function of s.) -7ts -TS + e + (s + 8) (s + 4)2 + 32 e L{y} = Use the Laplace transform to solve the given initial-value problem. A(a-)sin 3(t – 1) x )· «(t - «) + ( \ e-^'cos(3t) × )- a( - 4 -4t 'e sin (3t) | × 3 y(t) = t - n) + 3 7n

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the following initial value problem.
у" + 8y' + 25у %3D 6(t — л) + 6(t — 7л), у(0) %3D 1, у'(0)
= 0
-
Find the Laplace transform of the differential equation. (Write your answer as a function of s.)
-TS
-7Ts
+ e
+ (s + 8)
e
L{y}
(s + 4)² + 32
Use the Laplace transform to solve the given initial-value problem.
4 -4t
H )+( že
1,-4(1-1)sin 3(t– n) | ×
). a(e - -) + ( e Hcos(3t) ×
'e sin( 3t) x
-4t.
y(t)
t - T
t -
3
Transcribed Image Text:Consider the following initial value problem. у" + 8y' + 25у %3D 6(t — л) + 6(t — 7л), у(0) %3D 1, у'(0) = 0 - Find the Laplace transform of the differential equation. (Write your answer as a function of s.) -TS -7Ts + e + (s + 8) e L{y} (s + 4)² + 32 Use the Laplace transform to solve the given initial-value problem. 4 -4t H )+( že 1,-4(1-1)sin 3(t– n) | × ). a(e - -) + ( e Hcos(3t) × 'e sin( 3t) x -4t. y(t) t - T t - 3
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,