The initial value problem y" - y" + y' -y = 0, y(0) = 1, y'(0) = 1, y"(0) = 3 is given. If the Laplace transform of y(t) is Y(s), first find Y(s). Then using Y(s) find the solution of the given initial value problem. s2 +3 A. Y(s) = , y(t) = 2e + cost - sint s° - s- +s -1 s2 +3 B. Y(s) = y(t) = 2e - cost - sint s3 - s2 +s -1 s2 -3 C. Y(s) = , y(t) = 2e + cost - sint s - s2 +s - 1 s2 -3 s3 - s? +s - 1 D. Y(s) = y(t) = 2e - cost - sint

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The initial value problem
y" - y" + y' - y = 0, y(0) = 1, y'(0) = 1, y"(0) = 3
is given. If the Laplace transform of y(t) is Y(s), first find Y(s). Then using Y(s) find the solution of the given initial value problem.
s2 +3
O A. Y(s) =
, y(t) = 2e + cost - sint
s3- s +s - 1
s2 +3
B. Y(s) =
y(t) = 2e - cost - sint
53- s2 +s - 1
s2 - 3
C. Y(s) =
y(t) = 2et + cost - sint
s3 - s2 +s - 1
s2 - 3
s3 - s? +s - 1
D. Y(s) =-
-, y(t) = 2e - cost - sint
Transcribed Image Text:The initial value problem y" - y" + y' - y = 0, y(0) = 1, y'(0) = 1, y"(0) = 3 is given. If the Laplace transform of y(t) is Y(s), first find Y(s). Then using Y(s) find the solution of the given initial value problem. s2 +3 O A. Y(s) = , y(t) = 2e + cost - sint s3- s +s - 1 s2 +3 B. Y(s) = y(t) = 2e - cost - sint 53- s2 +s - 1 s2 - 3 C. Y(s) = y(t) = 2et + cost - sint s3 - s2 +s - 1 s2 - 3 s3 - s? +s - 1 D. Y(s) =- -, y(t) = 2e - cost - sint
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,