The initial value problem y" + 5y" - 8y' - 12y = -48, y(0) = 8, y'(0) = 29, y"(0) = -83 is given. If the Laplace transform of y(t) is Y(S), first find Y(s). Then using Y(s) find the solution of the given initial value problem. 8s3 + 69s2 - 25 - 48 s4 + 5s3 - 8s2 - 12s A. Y(s) = y(t) = e - 3e t + 6e - 4 8s3 + 69s2 - 25 - 48 s4+ 5s3 - 8s2 - 12s B. Y(s) = y(t) = e - 3e6+ 6e + 4 8s3 + 69s2 - 2s + 48 C. Y(s) = , y(t) = et - 3e6L + 6e + 4 s4 + 553 - 8s2 - 12s 8s3 + 69s2 - 2s + 48 s4 + 5s3 - 8s2 - 12s D. Y(s) = , y(t) = e - 3e 6 + 6e - 4
The initial value problem y" + 5y" - 8y' - 12y = -48, y(0) = 8, y'(0) = 29, y"(0) = -83 is given. If the Laplace transform of y(t) is Y(S), first find Y(s). Then using Y(s) find the solution of the given initial value problem. 8s3 + 69s2 - 25 - 48 s4 + 5s3 - 8s2 - 12s A. Y(s) = y(t) = e - 3e t + 6e - 4 8s3 + 69s2 - 25 - 48 s4+ 5s3 - 8s2 - 12s B. Y(s) = y(t) = e - 3e6+ 6e + 4 8s3 + 69s2 - 2s + 48 C. Y(s) = , y(t) = et - 3e6L + 6e + 4 s4 + 553 - 8s2 - 12s 8s3 + 69s2 - 2s + 48 s4 + 5s3 - 8s2 - 12s D. Y(s) = , y(t) = e - 3e 6 + 6e - 4
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,