Consider the variable coefficient linear non-homogeneous ODE where and where u and are unknown functions. O c(x) = The two linearly independent solutions of the associated homogeneous equation are O (a) Which of the following is the expression for u? O The solution method involves solving two first order ODES for u and v. 23 O 3 cosh(32)2+2 sinh(32) O A particular solution to the non-homogeneous equation can be found using the method of variation of parameters, 3 cosh(3z)z+2 sinh(32) sinh(32)z5 -3 cosh(3x)x-2 sinh(3x) O sinh(3z) 5 3 cosh(32)z+2 sinh(32) a(x) = (b) Which of the following is the expression for u? 23 3 cosh(32)x+2 sinh(3x) -3 cosh(3x)x - 2 sinh(32) 23 sinh(3z) 5 3 cosh(32)2+2 sinh(32) a(z)y" + b(z)y' + c(z)y=d(z) 18 sinh(3r)a + 18 cosh(32) 24 sinh(32) 5 -3 cosh(32)x-2 sinh(3x) z3 3 cosh(32)x+2 sinh(3x) b(x) = d(x) = 31=sinh(32), 3=2 p=1+2, (9z2 _6)sinh(3z) 24 -3 cosh(3x)x - 2 sinh(3x)
Consider the variable coefficient linear non-homogeneous ODE where and where u and are unknown functions. O c(x) = The two linearly independent solutions of the associated homogeneous equation are O (a) Which of the following is the expression for u? O The solution method involves solving two first order ODES for u and v. 23 O 3 cosh(32)2+2 sinh(32) O A particular solution to the non-homogeneous equation can be found using the method of variation of parameters, 3 cosh(3z)z+2 sinh(32) sinh(32)z5 -3 cosh(3x)x-2 sinh(3x) O sinh(3z) 5 3 cosh(32)z+2 sinh(32) a(x) = (b) Which of the following is the expression for u? 23 3 cosh(32)x+2 sinh(3x) -3 cosh(3x)x - 2 sinh(32) 23 sinh(3z) 5 3 cosh(32)2+2 sinh(32) a(z)y" + b(z)y' + c(z)y=d(z) 18 sinh(3r)a + 18 cosh(32) 24 sinh(32) 5 -3 cosh(32)x-2 sinh(3x) z3 3 cosh(32)x+2 sinh(3x) b(x) = d(x) = 31=sinh(32), 3=2 p=1+2, (9z2 _6)sinh(3z) 24 -3 cosh(3x)x - 2 sinh(3x)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
only HANDWRITTEN answer needed ( NOT TYPED)
![Consider the variable coefficient linear non-homogeneous ODE
where
and
where u and v are unknown functions.
c(x) =
O
The two linearly independent solutions of the associated homogeneous equation are
sinh(3r) 5
3 cosh (3x)x+2 sinh(3x)
23
O 3 cosh(32)+2 sinh(3a)
(a) Which of the following is the expression for u?
O
O
The solution method involves solving two first order ODES for u and v.
z3
3 cosh(3x)x+2 sinh(3x)
sinh(32) 5
-3 cosh(3x)x-2 sinh(3x)
O
a(x) =
A particular solution to the non-homogeneous equation can be found using the method of variation of parameters,
(b) Which of the following is the expression for u?
2:3
3 cosh(3x)x+2 sinh(3x)
-3 cosh (3x)x - 2 sinh(3x)
T3
sinh(32)z5
3 cosh(3)+2 sinh(3)
a(z)y" + b(r)y' + c(x)y=d(x)
18 sinh(3x)x+18 cosh (3x)
4
sinh(32) 5
-3 cosh(3x)x-2 sinh(3x)
2:3
3 cosh(3x)x+2 sinh(3x)
"1
b(x) =
d(x) =
31 = sinh(32), My = -2
yp = 1 + 2,
(9x² - 6) sinh(3x)
-3 cosh (3x)x - 2 sinh(3x)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff80e0ec3-ff16-4b82-b838-182eac38b34a%2F4b2fb674-d272-420f-9b5d-776a82ace9b9%2Fw9tj3jp_processed.png&w=3840&q=75)
Transcribed Image Text:Consider the variable coefficient linear non-homogeneous ODE
where
and
where u and v are unknown functions.
c(x) =
O
The two linearly independent solutions of the associated homogeneous equation are
sinh(3r) 5
3 cosh (3x)x+2 sinh(3x)
23
O 3 cosh(32)+2 sinh(3a)
(a) Which of the following is the expression for u?
O
O
The solution method involves solving two first order ODES for u and v.
z3
3 cosh(3x)x+2 sinh(3x)
sinh(32) 5
-3 cosh(3x)x-2 sinh(3x)
O
a(x) =
A particular solution to the non-homogeneous equation can be found using the method of variation of parameters,
(b) Which of the following is the expression for u?
2:3
3 cosh(3x)x+2 sinh(3x)
-3 cosh (3x)x - 2 sinh(3x)
T3
sinh(32)z5
3 cosh(3)+2 sinh(3)
a(z)y" + b(r)y' + c(x)y=d(x)
18 sinh(3x)x+18 cosh (3x)
4
sinh(32) 5
-3 cosh(3x)x-2 sinh(3x)
2:3
3 cosh(3x)x+2 sinh(3x)
"1
b(x) =
d(x) =
31 = sinh(32), My = -2
yp = 1 + 2,
(9x² - 6) sinh(3x)
-3 cosh (3x)x - 2 sinh(3x)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)