The arm angle, e (t), is controlled by a closed-loop system. The input (reference) to the system is the desired angle, and the output is the actual angle. A controller uses the difference between the desired angle and the actual angle to drive the motor, resulting in a motor torque applied to the system. motor torque(t) houlder joint damping(B) The customer wants to make a system to have 1) O steady-state error 2) Less than 10% overshoot 3) Less than 1- For a step inp **ling time Arm length (/) Mass(m) g design a controller to meet the design spec above. 1) Design a controller to meet the design spec. 2) Evaluate your controller using step response (time response) 3) Evaluate your closed-loop system using frequency response (e.g., Bandwidth, Gain margin. Phase margin).
The arm angle, e (t), is controlled by a closed-loop system. The input (reference) to the system is the desired angle, and the output is the actual angle. A controller uses the difference between the desired angle and the actual angle to drive the motor, resulting in a motor torque applied to the system. motor torque(t) houlder joint damping(B) The customer wants to make a system to have 1) O steady-state error 2) Less than 10% overshoot 3) Less than 1- For a step inp **ling time Arm length (/) Mass(m) g design a controller to meet the design spec above. 1) Design a controller to meet the design spec. 2) Evaluate your controller using step response (time response) 3) Evaluate your closed-loop system using frequency response (e.g., Bandwidth, Gain margin. Phase margin).
Automotive Technology: A Systems Approach (MindTap Course List)
6th Edition
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Jack Erjavec, Rob Thompson
Chapter22: Basics Of Electronics And Computer Systems
Section: Chapter Questions
Problem 4RQ: Means that data concerning the effects of the computers commands are fed back to the computer as an...
Related questions
Question
![The arm angle, e (t), is controlled by a closed-loop system. The input (reference) to the system
is the desired angle, and the output is the actual angle. A controller uses the difference
between the desired angle and the actual angle to drive the motor, resulting in a motor torque
applied to the system.
motor
torque(t)
houlder joint
damping(B)
The customer wants to make a system to have
1) O steady-state error
2) Less than 10% overshoot
3) Less than 1-
For a step inp
**ling time
Arm length (/)
Mass(m)
g
design a controller to meet the design spec above.
1) Design a controller to meet the design spec.
2) Evaluate your controller using step response (time response)
3) Evaluate your closed-loop system using frequency response (e.g., Bandwidth,
Gain margin. Phase margin).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fac6c0457-7a45-43f2-b38c-64ac65853ed3%2Fe384439f-fd7e-4582-890b-59e0118aedd2%2F970eq8p_processed.png&w=3840&q=75)
Transcribed Image Text:The arm angle, e (t), is controlled by a closed-loop system. The input (reference) to the system
is the desired angle, and the output is the actual angle. A controller uses the difference
between the desired angle and the actual angle to drive the motor, resulting in a motor torque
applied to the system.
motor
torque(t)
houlder joint
damping(B)
The customer wants to make a system to have
1) O steady-state error
2) Less than 10% overshoot
3) Less than 1-
For a step inp
**ling time
Arm length (/)
Mass(m)
g
design a controller to meet the design spec above.
1) Design a controller to meet the design spec.
2) Evaluate your controller using step response (time response)
3) Evaluate your closed-loop system using frequency response (e.g., Bandwidth,
Gain margin. Phase margin).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Automotive Technology: A Systems Approach (MindTa…](https://www.bartleby.com/isbn_cover_images/9781133612315/9781133612315_smallCoverImage.gif)
Automotive Technology: A Systems Approach (MindTa…
Mechanical Engineering
ISBN:
9781133612315
Author:
Jack Erjavec, Rob Thompson
Publisher:
Cengage Learning
![Automotive Technology: A Systems Approach (MindTa…](https://www.bartleby.com/isbn_cover_images/9781133612315/9781133612315_smallCoverImage.gif)
Automotive Technology: A Systems Approach (MindTa…
Mechanical Engineering
ISBN:
9781133612315
Author:
Jack Erjavec, Rob Thompson
Publisher:
Cengage Learning