S-adenosyl methionine (SAM-e) is a naturally occurring compound in human cells that is thought to have an effect on depression symptoms. Suppose that a researcher is interested in testing SAM-e on patients who are struggling with Alzheimer’s. She obtains a sample of n = 30 patients and asks each person to take the suggested dosage each day for 4 weeks. At the end of the 4-week period, each individual takes the Beck Depression Inventory (BDI), which is a 21-item, multiple-choice self-report inventory for measuring the severity of depression. The scores from the sample produced a mean of M = 26.2 with a standard deviation of s = 2.97. In the general population of Alzheimer’s patients, the standardized test is known to have a population mean of μ = 28.1. Because there are no previous studies using SAM-e with this population, the researcher doesn’t know how it will affect these patients; therefore, she uses a two-tailed single-sample t test to test the hypothesis.   From the following, select the correct null and alternative hypotheses for this study: H₀: MSAM-eSAM-e ≥ 28.1; H₁: MSAM-eSAM-e < 28.1   H₀: MSAM-eSAM-e ≥ 28.1; H₁: MSAM-eSAM-e > 28.1   H₀: μSAM-eSAM-e ≥ 28.1; H₁: μSAM-eSAM-e < 28.1   H₀: μSAM-eSAM-e = 28.1; H₁: μSAM-eSAM-e ≠ 28.1   Assume that the depression scores among patients taking SAM-e are normally distributed. You will first need to determine the degrees of freedom. There are    degrees of freedom.   df Proportion in One Tail 0.25 0.10 0.05 0.025 0.01 0.005 Proportion in Two Tails Combined 0.50 0.20 0.10 0.05 0.02 0.01 1 1.000 3.078 6.314 12.706 31.821 63.657 2 0.816 1.886 2.920 4.303 6.965 9.925 3 0.765 1.638 2.353 3.182 4.541 5.841 4 0.741 1.533 2.132 2.776 3.747 4.604 5 0.727 1.476 2.015 2.571 3.365 4.032 6 0.718 1.440 1.943 2.447 3.143 3.707 7 0.711 1.415 1.895 2.365 2.998 3.499 8 0.706 1.397 1.860 2.306 2.896 3.355 9 0.703 1.383 1.833 2.262 2.821 3.250 10 0.700 1.372 1.812 2.228 2.764 3.169 11 0.697 1.363 1.796 2.201 2.718 3.106 12 0.695 1.356 1.782 2.179 2.681 3.055 13 0.694 1.350 1.771 2.160 2.650 3.012 14 0.692 1.345 1.761 2.145 2.624 2.977 15 0.691 1.341 1.753 2.131 2.602 2.947 16 0.690 1.337 1.746 2.120 2.583 2.921 17 0.689 1.333 1.740 2.110 2.567 2.898 18 0.688 1.330 1.734 2.101 2.552 2.878 19 0.688 1.328 1.729 2.093 2.539 2.861 20 0.687 1.325 1.725 2.086 2.528 2.845 21 0.686 1.323 1.721 2.080 2.518 2.831 22 0.686 1.321 1.717 2.074 2.508 2.819 23 0.685 1.319 1.714 2.069 2.500 2.807 24 0.685 1.318 1.711 2.064 2.492 2.797 25 0.684 1.316 1.708 2.060 2.485 2.787 26 0.684 1.315 1.706 2.056 2.479 2.779 27 0.684 1.314 1.703 2.052 2.473 2.771 28 0.683 1.313 1.701 2.048 2.467 2.763 29 0.683 1.311 1.699 2.045 2.462 2.756 30 0.683 1.310 1.697 2.042 2.457 2.750 40 0.681 1.303 1.684 2.021 2.423 2.704 60 0.679 1.296 1.671 2.000 2.390 2.660 120 0.677 1.289 1.658 1.980 2.358 2.617 ∞ 0.674 1.282 1.645 1.960 2.326 2.576   The critical t scores (the values that define the borders of the critical region) are    .   The estimated standard error is    .   The t statistic is    .   The t statistic    in the critical region. Therefore, the null hypothesis    rejected.   Therefore, the researcher    conclude that SAM-e has a significant effect on the moods of Alzheimer’s patients.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
S-adenosyl methionine (SAM-e) is a naturally occurring compound in human cells that is thought to have an effect on depression symptoms. Suppose that a researcher is interested in testing SAM-e on patients who are struggling with Alzheimer’s. She obtains a sample of n = 30 patients and asks each person to take the suggested dosage each day for 4 weeks. At the end of the 4-week period, each individual takes the Beck Depression Inventory (BDI), which is a 21-item, multiple-choice self-report inventory for measuring the severity of depression.
The scores from the sample produced a mean of M = 26.2 with a standard deviation of s = 2.97. In the general population of Alzheimer’s patients, the standardized test is known to have a population mean of μ = 28.1. Because there are no previous studies using SAM-e with this population, the researcher doesn’t know how it will affect these patients; therefore, she uses a two-tailed single-sample t test to test the hypothesis.
 
From the following, select the correct null and alternative hypotheses for this study:
H₀: MSAM-eSAM-e ≥ 28.1; H₁: MSAM-eSAM-e < 28.1
 
H₀: MSAM-eSAM-e ≥ 28.1; H₁: MSAM-eSAM-e > 28.1
 
H₀: μSAM-eSAM-e ≥ 28.1; H₁: μSAM-eSAM-e < 28.1
 
H₀: μSAM-eSAM-e = 28.1; H₁: μSAM-eSAM-e ≠ 28.1
 
Assume that the depression scores among patients taking SAM-e are normally distributed. You will first need to determine the degrees of freedom. There are    degrees of freedom.
 
df
Proportion in One Tail
0.25
0.10
0.05
0.025
0.01
0.005
Proportion in Two Tails Combined
0.50
0.20
0.10
0.05
0.02
0.01
1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.816 1.886 2.920 4.303 6.965 9.925
3 0.765 1.638 2.353 3.182 4.541 5.841
4 0.741 1.533 2.132 2.776 3.747 4.604
5 0.727 1.476 2.015 2.571 3.365 4.032
6 0.718 1.440 1.943 2.447 3.143 3.707
7 0.711 1.415 1.895 2.365 2.998 3.499
8 0.706 1.397 1.860 2.306 2.896 3.355
9 0.703 1.383 1.833 2.262 2.821 3.250
10 0.700 1.372 1.812 2.228 2.764 3.169
11 0.697 1.363 1.796 2.201 2.718 3.106
12 0.695 1.356 1.782 2.179 2.681 3.055
13 0.694 1.350 1.771 2.160 2.650 3.012
14 0.692 1.345 1.761 2.145 2.624 2.977
15 0.691 1.341 1.753 2.131 2.602 2.947
16 0.690 1.337 1.746 2.120 2.583 2.921
17 0.689 1.333 1.740 2.110 2.567 2.898
18 0.688 1.330 1.734 2.101 2.552 2.878
19 0.688 1.328 1.729 2.093 2.539 2.861
20 0.687 1.325 1.725 2.086 2.528 2.845
21 0.686 1.323 1.721 2.080 2.518 2.831
22 0.686 1.321 1.717 2.074 2.508 2.819
23 0.685 1.319 1.714 2.069 2.500 2.807
24 0.685 1.318 1.711 2.064 2.492 2.797
25 0.684 1.316 1.708 2.060 2.485 2.787
26 0.684 1.315 1.706 2.056 2.479 2.779
27 0.684 1.314 1.703 2.052 2.473 2.771
28 0.683 1.313 1.701 2.048 2.467 2.763
29 0.683 1.311 1.699 2.045 2.462 2.756
30 0.683 1.310 1.697 2.042 2.457 2.750
40 0.681 1.303 1.684 2.021 2.423 2.704
60 0.679 1.296 1.671 2.000 2.390 2.660
120 0.677 1.289 1.658 1.980 2.358 2.617
0.674 1.282 1.645 1.960 2.326 2.576
 
The critical t scores (the values that define the borders of the critical region) are    .
 
The estimated standard error is    .
 
The t statistic is    .
 
The t statistic    in the critical region. Therefore, the null hypothesis    rejected.
 
Therefore, the researcher    conclude that SAM-e has a significant effect on the moods of Alzheimer’s patients.
Expert Solution
Step 1

Given information:

Sample size n=30

Sample mean M=26.2

Sample standard deviation s=2.97

Population mean μ=28.1

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Statistical Power and Errors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman