Problem 2.14 In the ground state of the harmonic oscillator, what is the probability (correct to three significant digits) of finding the particle outside the classically allowed region? Hint: Classically, the energy of an oscillator is E = (1/2) ka² = (1/2) mw²a², where a is the amplitude. So the “classically allowed region" for an oscillator of energy E extends from –/2E/mo² to +/2E/mo². Look in a math table under “Normal Distribution" or "Error Function" for the numerical value of the integral, or evaluate it by computer. -

icon
Related questions
Question
Problem 2.14 In the ground state of the harmonic oscillator, what is the probability (correct
to three significant digits) of finding the particle outside the classically allowed region?
Hint: Classically, the energy of an oscillator is E = (1/2) ka² = (1/2) mo²a², where a
is the amplitude. So the “classically allowed region" for an oscillator of energy E extends
from –/2E/mw² to +/2E/mo². Look in a math table under “Normal Distribution" or
"Error Function" for the numerical value of the integral, or evaluate it by computer.
Transcribed Image Text:Problem 2.14 In the ground state of the harmonic oscillator, what is the probability (correct to three significant digits) of finding the particle outside the classically allowed region? Hint: Classically, the energy of an oscillator is E = (1/2) ka² = (1/2) mo²a², where a is the amplitude. So the “classically allowed region" for an oscillator of energy E extends from –/2E/mw² to +/2E/mo². Look in a math table under “Normal Distribution" or "Error Function" for the numerical value of the integral, or evaluate it by computer.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions