Problem 2: A 5.0-mm-diameter proton beam carries a total current of I = 1.5 mA. The current density in the proton beam, which increases with distance from the center, is given by J = Jedge (r/R), where R is the radius of the beam and Jedge is the current density at the edge. Determine the value of Jedge. a) Fig. 3 shows the cross section of the beam. Compute the current dI flowing through the ring of radius r and width dr shown in the figure. Notice that for small dr the area of the ring can be approximated by the area of a rectangle that you can get by "unrolling" the ring. dr I = = f dI. Express Jedge as a function of I and R and compute its value. 2ПГ c) How many protons per second are delivered by this proton beam? R b) Sum up the contributions from all rings by integrating dI with respect to the radial coordinate r, r=R FIG. 3: The scheme for Problem 2

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Hello, can you help me with me with part a, part b and part c, and can you label which one is one, thank you so much

Problem 2: A 5.0-mm-diameter proton beam carries a total current of
I = 1.5 mA. The current density in the proton beam, which increases
with distance from the center, is given by J = Jedge (r/R), where R is the
radius of the beam and Jedge is the current density at the edge. Determine
the value of Jedge.
a) Fig. 3 shows the cross section of the beam. Compute the current
dI flowing through the ring of radius r and width dr shown in the figure.
Notice that for small dr the area of the ring can be approximated by the
area of a rectangle that you can get by "unrolling" the ring.
dr
I =
= f dI. Express Jedge as a function of I and R and compute its value.
2ПГ
c) How many protons per second are delivered by this proton beam?
R
b) Sum up the contributions from all rings by integrating dI with respect to the radial coordinate r,
r=R
FIG. 3: The scheme for Problem 2
Transcribed Image Text:Problem 2: A 5.0-mm-diameter proton beam carries a total current of I = 1.5 mA. The current density in the proton beam, which increases with distance from the center, is given by J = Jedge (r/R), where R is the radius of the beam and Jedge is the current density at the edge. Determine the value of Jedge. a) Fig. 3 shows the cross section of the beam. Compute the current dI flowing through the ring of radius r and width dr shown in the figure. Notice that for small dr the area of the ring can be approximated by the area of a rectangle that you can get by "unrolling" the ring. dr I = = f dI. Express Jedge as a function of I and R and compute its value. 2ПГ c) How many protons per second are delivered by this proton beam? R b) Sum up the contributions from all rings by integrating dI with respect to the radial coordinate r, r=R FIG. 3: The scheme for Problem 2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Resistivity
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON