1. A 5 x 105-kg subway train is brought to a stop from a speed of 0.5 m/s in 0.3 m by a large spring bumper at the end of its track. Neglect friction. Think & Prepare 1. Make note of what's given and what's unknown. Relate known quantities to symbols. 2. Draw a labeled sketch if possible. 3. Identify the physics principle and approach. Write down relevant equations symbolically. Simplify if possible. 4. Insert numerical quantities to solve for unknowns. 5. Does the answer make sense? (a) What external forces act on the train? Are they conservative or non-conservative? Normal force: Spring force: Weight: (b) Is mechanical energy conserved during the stopping of the train? Think about reasons for your answer. (c) What is the force constant k of the spring? k= N/m

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

Can someone answer part C please? Thank you :)

1. A 5X 105-kg subway train is brought to a stop from a speed of 0.5 m/s in 0.3 m by a large spring
bumper at the end of its track. Neglect friction.
Think & Prepare
1. Make note of what's given and what's unknown. Relate known quantities to symbols.
2. Draw a labeled sketch if possible.
3. Identify the physics principle and approach. Write down relevant equations symbolically. Simplify if
possible.
4. Insert numerical quantities to solve for unknowns.
I
5. Does the answer make sense?
(a) What external forces act on the train? Are they conservative or non-conservative?
Normal force:
Spring force:
Weight:
(b) Is mechanical energy conserved during the stopping of the train? Think about reasons for your
answer.
(c) What is the force constant k of the spring?
k=
N/m
Transcribed Image Text:1. A 5X 105-kg subway train is brought to a stop from a speed of 0.5 m/s in 0.3 m by a large spring bumper at the end of its track. Neglect friction. Think & Prepare 1. Make note of what's given and what's unknown. Relate known quantities to symbols. 2. Draw a labeled sketch if possible. 3. Identify the physics principle and approach. Write down relevant equations symbolically. Simplify if possible. 4. Insert numerical quantities to solve for unknowns. I 5. Does the answer make sense? (a) What external forces act on the train? Are they conservative or non-conservative? Normal force: Spring force: Weight: (b) Is mechanical energy conserved during the stopping of the train? Think about reasons for your answer. (c) What is the force constant k of the spring? k= N/m
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Potential energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON