Let's call a committee of three people a "consumer." (Groups of people often act together as "consumers.") Our committee makes decisions using majority voting. When the committee members compare two alternatives, x and y, they simply take a vote, and the winner is said to be "preferred" by the committee to the loser. Suppose that the preferences of the individuals are as follows: Person 1 likes x best, y second best, and z third best. We write this in the following way: Person 1: x, y, z. Assume the preferences of the other two people are: Person 2: y, z, x; and Person 3: z, x, y. Show that in this example the committee preferences produced by majority voting violate transitivity. (This is the famous "voting paradox" first described by the French philosopher and mathematician Marquis de Condorcet (1743–1794).)
Let's call a committee of three people a "consumer." (Groups of people often act together as "consumers.") Our committee makes decisions using majority voting. When the committee members compare two alternatives, x and y, they simply take a vote, and the winner is said to be "preferred" by the committee to the loser. Suppose that the preferences of the individuals are as follows: Person 1 likes x best, y second best, and z third best. We write this in the following way: Person 1: x, y, z. Assume the preferences of the other two people are: Person 2: y, z, x; and Person 3: z, x, y. Show that in this example the committee preferences produced by majority voting violate transitivity. (This is the famous "voting paradox" first described by the French philosopher and mathematician Marquis de Condorcet (1743–1794).)
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
Related questions
Question

Transcribed Image Text:Let's call a committee of three people a "consumer." (Groups of people often
act together as "consumers.") Our committee makes decisions using majority
voting. When the committee members compare two alternatives, x and y,
they simply take a vote, and the winner is said to be "preferred" by the
committee to the loser. Suppose that the preferences of the individuals are as
follows: Person 1 likes x best, y second best, and z third best. We write this in
the following way: Person 1: x, y, z. Assume the preferences of the other two
people are: Person 2: y, z, x; and Person 3 : z, x, y. Show that in this
example the committee preferences produced by majority voting violate
transitivity. (This is the famous "voting paradox" first described by the French
philosopher and mathematician Marquis de Condorcet (1743–1794).)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.Recommended textbooks for you


Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON

Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON


Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON

Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON

Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning

Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning

Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education