ld Price ($ thousands) SqFt 1 153000 920 1 0 33 Yes Baths Bedrooms Garage Age of Property Lot Size Property Condition Basement Outdoor Amenities School Quality Crime Rate Proximity to Amenities Transportation Accessibility 3280 Poor Property Tax Rate None 6 1.83 3.5 No 186 2 163150 750 1 2 0 38 2772 Poor No None 9 2.34 3.9 Yes 104 3 164900 900 1 2 0 13 3530 Excellent Yes None 6 2.98 3.9 No 2.11 4 170175 1500 т 2 0 31 5561 Fair Yes Deck 7 2.49 4.8 No 184 5 176900 1030 2 2 0 47 3247 Excellent No None 3 2.82 4.3 No 1.95 6 187700 1090 2 0 36 3898 Pocr No Garden 8 2.68 4 No 15 7 295000 1280 2 2 1 45 4617 Excellent Yes None 9 2.66 5 No 2.22 8 251650 1365 1 2 1 24 4674 Good No Garden 8 2.69 3.8 No 2.32 9 472990 1690 3 3 1 15 6315 Fair Yes Deck g 1.2 4 No 15 10 473000 1765 3 3 1 29 6944 Fair Yes Deck 9 1.74 4.2 No 1.88 11 773650 2780 3.5 4 2 8 10913 Fair Yes Deck 8 1 1.6 No 1.63 674000 1910 3 3 2 5 6591 Poor Yes Garden 6 1 2.8 No 1.95 13 885000 1920 4 4 2 29 5977 Fair No Deck 7 1 1.8 No 2.19 14 780000 1930 4 4 2 47 7691 Good Yes Garden 8 1 2.1 Yes 23 15 385900 950 1.5 3 1 4 3647 Poor Yes Deck 6 1.94 4 No 134 16 284650 850 1 2 1 12 2656 Fair No None 5 1.94 3.7 No 1.09 17 189500 950 2 1 18 392800 1025 2 2 19 299600 1560 1.5 2 20 115350 980 1.5 1 21 120170 750 1.5 1 22 164900 840 1 1 23 574900 2180 2.5 3 24 970000 3400 3.5 4 25 810000 2790 3 4 26 840000 2860 3 4 27 185500 1350 1 1 28 289600 1100 1.5 2 OHHOOOHMNNOO 0 45 3725 Fair No None 7 2.93 4.1 Yes 1.93 1 2 3967 Excellent No Garden 6 1.65 3.6 No 1.66 1 27 5489 Excellent No Pool 7 1.77 3.8 Yes 197 0 31 3519 Fair No Deck 7 3.06 4 Yes 1.19 0 36 2549 Good No None 6 1.9 5 No 1.63 0 36 2566 Poor No None 6 2.7 5 Yes 15 1 26 7271 Good Yes Garden 6 1 3.3 No 2.27 3 43 12930 Fair Yes Garden 9 1 1.6 No 2.94 2 27 8383 Good Yes Garden 8 1 1.9 No 2.79 2 5 9534 Excellent No Deck 9 1 1.8 Yes 28 0 20 4588 Good Yes None 6 2.59 5 Yes 2.02 0 11 3891 Fair No Pool 6 1.07 4.5 No 1.93 29 389800 1250 2 3 1 10 4900 Fair Yes None 8 1.38 3.3 No 2.29 30 689500 1870 3 3 1 40 6258 Good Yes Garden 9 1.22 2.8 No 19 31 889100 2850 3.5 4 2 38 9539 Good Yes Garden 7 1 1.9 Yes 2.15 32 283700 985 1.5 2 33 160450 980 1 1 34 195989 1100 1.5 1 35 999900 3250 4 4 36 225340 1150 2 2 COONO 0 6 3681 Good No None 6 2.2 4.3 No 1.09 0 8 3383 Poor Yes None 8 1.79 4.7 No 2.08 0 23 3547 Fair No Garden 8 2.64 4.9 No 1.12 2 47 11220 Good No Garden 8 1 1.2 Yes 2.21 0 26 3612 Good No None 7 2.27 4.3 No 1.22 37 125750 950 1.5 1 0 46 3018 Good No Deck 6 3.19 3.7 No 2.14 38 124700 890 2 1 0 43 3114 Fair No None 3 2.24 4 No 2.18 39 200500 1200 2 2 1 12 4103 Fair Yes Deck 9 2.08 4.8 Yes 1.72 40 128500 980 1 1 0 26 3837 Poor Yes None 8 1.33 4.1 No 2.1 41 174360 1100 1.5 1 1 13 3699 Excellent No Garden 7 2.88 4 No 1.37 42 179800 1210 2 1 0 40 4333 Poor Yes Deck 7 2.56 4.4 Yes 2.15 43 205450 1350 2.5 2 1 18 4904 Fair Yes Garden 7 1.47 4.7 No 169 44 779800 2600 3 4 2 25 7834 Excellent Yes Garden 9 1 1.9 No 199 45 128800 985 1.5 1 0 33 3609 Fair No None 8 2.13 2.8 Yes 1.11 46 522200 2345 3 3 1 47 7452 Fair No Pool 6 1.66 2.8 Yes 1.77 47 1173200 3250 3.5 5 2 40 12873 Poor No Deck 9 1 1.7 No 1.59 48 1824200 3875 4 5 3 43 12201 Good Yes Garden 8 1 1 Yes 2.91 49 2475200 4560 5 6 3 12 15571 Good No Garden 8 1 1 No 3.78 50 3126200 5870 5.5 7 4 44 18111 Fair Yes Pool 9 1 1 No 2

Enhanced Discovering Computers 2017 (Shelly Cashman Series) (MindTap Course List)
1st Edition
ISBN:9781305657458
Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Chapter11: Building Solutions: Database, System, And Application Development Tools
Section: Chapter Questions
Problem 23CT
icon
Related questions
Question

You must use Excel to perform the regression analysis. Provide the answers under the space provided for each question. You must provide the Excel output for the question along with the answers. Round off the values on the output to three-five decimal places if appropriate.

Examine the interaction effect between Lot Size and Outdoor Amenities (deck or garden) on house price in a multiple regression model.

Questions:

1. Include an interaction term for Lot Size × Outdoor Amenities in the regression model, along with the individual terms for Lot Size and Outdoor Amenities. (3p)

2. Analyze the p-value of the interaction term to determine if the interaction significantly contributes to predicting house price. (α = 0.05) (3p)

3. Interpret the coefficient of the interaction term to understand how the presence of outdoor amenities may add value to properties with larger lot sizes. (3p)

4. Write the corresponding regression equation substituting each coefficient and independent variables along with the interaction term. What is the predicted price for homes with a lot size of 5,000 square feet that include a garden?(4p)

Conduct a simple linear regression analysis for each independent variable associated with the external factors, using house price as the dependent variable. Make sure to use the indicator variables for the categorical data. (Significance level of α = 0.05). For each regression:

1. Report the p-value of the independent variable and indicate whether it is a significant predictor of house price (based on the p-value being less than 0.05). (3p)

2. Report the explained variability (R-squared value) for each variable, whether it is significant based on the p-value. (3p)

3. Identify and list any variables that are not significant predictors of house price (i.e., those with p-values greater than 0.05). (3p)

Conduct a multiple regression analysis using all significant external factors, such as School Quality, Crime Rate, Proximity to Amenities, Transportation Accessibility, and Property Tax Rate to predict house price. 

1. Report the p-values for each external factor to assess their significance as predictors of house price. (3p)

2. Interpret the coefficients for each significant variable to understand the direction and strength of its relationship with house price. (3p)

3. Evaluate the overall model fit (e.g., R-squared value) to determine how well these external factors explain the variability in house price. Is the overall model statistically significant at .05 level of significance? (3p)

4. In a multiple regression model for house price using external factors, analyze any insignificant variables (those with p-values greater than 0.05). If any are identified, check multicollinearity and identify highly correlated variables. (3p)

List pairs of variables with high correlation coefficients and consider potential reasons for their correlation.

Based on the findings, consider approaches to address multicollinearity, such as removing highly correlated variables to improve the model and rerun the regression analysis. 

1. Write the multiple regression equation by substituting each coefficient and significant external factor as independent variables into the model. Then, use this equation to make a prediction for house price based on the following values for the external factors: School Quality:9, Crime Rate:1, Property Tax Rate: 2.5. (5p)

ld
Price ($ thousands)
SqFt
1
153000
920
1
0
33
Yes
Baths Bedrooms Garage Age of Property Lot Size Property Condition Basement Outdoor Amenities School Quality Crime Rate Proximity to Amenities Transportation Accessibility
3280
Poor
Property Tax Rate
None
6
1.83
3.5
No
186
2
163150
750
1
2
0
38
2772
Poor
No
None
9
2.34
3.9
Yes
104
3
164900
900
1
2
0
13
3530
Excellent
Yes
None
6
2.98
3.9
No
2.11
4
170175
1500
т
2
0
31
5561
Fair
Yes
Deck
7
2.49
4.8
No
184
5
176900
1030
2
2
0
47
3247
Excellent
No
None
3
2.82
4.3
No
1.95
6
187700
1090
2
0
36
3898
Pocr
No
Garden
8
2.68
4
No
15
7
295000
1280
2
2
1
45
4617
Excellent
Yes
None
9
2.66
5
No
2.22
8
251650
1365
1
2
1
24
4674
Good
No
Garden
8
2.69
3.8
No
2.32
9
472990
1690
3
3
1
15
6315
Fair
Yes
Deck
g
1.2
4
No
15
10
473000
1765
3
3
1
29
6944
Fair
Yes
Deck
9
1.74
4.2
No
1.88
11
773650
2780
3.5
4
2
8
10913
Fair
Yes
Deck
8
1
1.6
No
1.63
674000
1910
3
3
2
5
6591
Poor
Yes
Garden
6
1
2.8
No
1.95
13
885000
1920
4
4
2
29
5977
Fair
No
Deck
7
1
1.8
No
2.19
14
780000
1930
4
4
2
47
7691
Good
Yes
Garden
8
1
2.1
Yes
23
15
385900
950
1.5
3
1
4
3647
Poor
Yes
Deck
6
1.94
4
No
134
16
284650
850
1
2
1
12
2656
Fair
No
None
5
1.94
3.7
No
1.09
17
189500
950
2
1
18
392800
1025
2
2
19
299600
1560
1.5
2
20
115350
980
1.5
1
21
120170
750
1.5
1
22
164900
840
1
1
23
574900
2180
2.5
3
24
970000
3400
3.5
4
25
810000
2790
3
4
26
840000
2860
3
4
27
185500
1350
1
1
28
289600
1100
1.5
2
OHHOOOHMNNOO
0
45
3725
Fair
No
None
7
2.93
4.1
Yes
1.93
1
2
3967
Excellent
No
Garden
6
1.65
3.6
No
1.66
1
27
5489
Excellent
No
Pool
7
1.77
3.8
Yes
197
0
31
3519
Fair
No
Deck
7
3.06
4
Yes
1.19
0
36
2549
Good
No
None
6
1.9
5
No
1.63
0
36
2566
Poor
No
None
6
2.7
5
Yes
15
1
26
7271
Good
Yes
Garden
6
1
3.3
No
2.27
3
43
12930
Fair
Yes
Garden
9
1
1.6
No
2.94
2
27
8383
Good
Yes
Garden
8
1
1.9
No
2.79
2
5
9534
Excellent
No
Deck
9
1
1.8
Yes
28
0
20
4588
Good
Yes
None
6
2.59
5
Yes
2.02
0
11
3891
Fair
No
Pool
6
1.07
4.5
No
1.93
29
389800
1250
2
3
1
10
4900
Fair
Yes
None
8
1.38
3.3
No
2.29
30
689500
1870
3
3
1
40
6258
Good
Yes
Garden
9
1.22
2.8
No
19
31
889100
2850
3.5
4
2
38
9539
Good
Yes
Garden
7
1
1.9
Yes
2.15
32
283700
985
1.5
2
33
160450
980
1
1
34
195989
1100
1.5
1
35
999900
3250
4
4
36
225340
1150
2
2
COONO
0
6
3681
Good
No
None
6
2.2
4.3
No
1.09
0
8
3383
Poor
Yes
None
8
1.79
4.7
No
2.08
0
23
3547
Fair
No
Garden
8
2.64
4.9
No
1.12
2
47
11220
Good
No
Garden
8
1
1.2
Yes
2.21
0
26
3612
Good
No
None
7
2.27
4.3
No
1.22
37
125750
950
1.5
1
0
46
3018
Good
No
Deck
6
3.19
3.7
No
2.14
38
124700
890
2
1
0
43
3114
Fair
No
None
3
2.24
4
No
2.18
39
200500
1200
2
2
1
12
4103
Fair
Yes
Deck
9
2.08
4.8
Yes
1.72
40
128500
980
1
1
0
26
3837
Poor
Yes
None
8
1.33
4.1
No
2.1
41
174360
1100
1.5
1
1
13
3699
Excellent
No
Garden
7
2.88
4
No
1.37
42
179800
1210
2
1
0
40
4333
Poor
Yes
Deck
7
2.56
4.4
Yes
2.15
43
205450
1350
2.5
2
1
18
4904
Fair
Yes
Garden
7
1.47
4.7
No
169
44
779800
2600
3
4
2
25
7834
Excellent
Yes
Garden
9
1
1.9
No
199
45
128800
985
1.5
1
0
33
3609
Fair
No
None
8
2.13
2.8
Yes
1.11
46
522200
2345
3
3
1
47
7452
Fair
No
Pool
6
1.66
2.8
Yes
1.77
47
1173200
3250
3.5
5
2
40
12873
Poor
No
Deck
9
1
1.7
No
1.59
48
1824200
3875
4
5
3
43
12201
Good
Yes
Garden
8
1
1
Yes
2.91
49
2475200
4560
5
6
3
12
15571
Good
No
Garden
8
1
1
No
3.78
50
3126200
5870
5.5
7
4
44
18111
Fair
Yes
Pool
9
1
1
No
2
Transcribed Image Text:ld Price ($ thousands) SqFt 1 153000 920 1 0 33 Yes Baths Bedrooms Garage Age of Property Lot Size Property Condition Basement Outdoor Amenities School Quality Crime Rate Proximity to Amenities Transportation Accessibility 3280 Poor Property Tax Rate None 6 1.83 3.5 No 186 2 163150 750 1 2 0 38 2772 Poor No None 9 2.34 3.9 Yes 104 3 164900 900 1 2 0 13 3530 Excellent Yes None 6 2.98 3.9 No 2.11 4 170175 1500 т 2 0 31 5561 Fair Yes Deck 7 2.49 4.8 No 184 5 176900 1030 2 2 0 47 3247 Excellent No None 3 2.82 4.3 No 1.95 6 187700 1090 2 0 36 3898 Pocr No Garden 8 2.68 4 No 15 7 295000 1280 2 2 1 45 4617 Excellent Yes None 9 2.66 5 No 2.22 8 251650 1365 1 2 1 24 4674 Good No Garden 8 2.69 3.8 No 2.32 9 472990 1690 3 3 1 15 6315 Fair Yes Deck g 1.2 4 No 15 10 473000 1765 3 3 1 29 6944 Fair Yes Deck 9 1.74 4.2 No 1.88 11 773650 2780 3.5 4 2 8 10913 Fair Yes Deck 8 1 1.6 No 1.63 674000 1910 3 3 2 5 6591 Poor Yes Garden 6 1 2.8 No 1.95 13 885000 1920 4 4 2 29 5977 Fair No Deck 7 1 1.8 No 2.19 14 780000 1930 4 4 2 47 7691 Good Yes Garden 8 1 2.1 Yes 23 15 385900 950 1.5 3 1 4 3647 Poor Yes Deck 6 1.94 4 No 134 16 284650 850 1 2 1 12 2656 Fair No None 5 1.94 3.7 No 1.09 17 189500 950 2 1 18 392800 1025 2 2 19 299600 1560 1.5 2 20 115350 980 1.5 1 21 120170 750 1.5 1 22 164900 840 1 1 23 574900 2180 2.5 3 24 970000 3400 3.5 4 25 810000 2790 3 4 26 840000 2860 3 4 27 185500 1350 1 1 28 289600 1100 1.5 2 OHHOOOHMNNOO 0 45 3725 Fair No None 7 2.93 4.1 Yes 1.93 1 2 3967 Excellent No Garden 6 1.65 3.6 No 1.66 1 27 5489 Excellent No Pool 7 1.77 3.8 Yes 197 0 31 3519 Fair No Deck 7 3.06 4 Yes 1.19 0 36 2549 Good No None 6 1.9 5 No 1.63 0 36 2566 Poor No None 6 2.7 5 Yes 15 1 26 7271 Good Yes Garden 6 1 3.3 No 2.27 3 43 12930 Fair Yes Garden 9 1 1.6 No 2.94 2 27 8383 Good Yes Garden 8 1 1.9 No 2.79 2 5 9534 Excellent No Deck 9 1 1.8 Yes 28 0 20 4588 Good Yes None 6 2.59 5 Yes 2.02 0 11 3891 Fair No Pool 6 1.07 4.5 No 1.93 29 389800 1250 2 3 1 10 4900 Fair Yes None 8 1.38 3.3 No 2.29 30 689500 1870 3 3 1 40 6258 Good Yes Garden 9 1.22 2.8 No 19 31 889100 2850 3.5 4 2 38 9539 Good Yes Garden 7 1 1.9 Yes 2.15 32 283700 985 1.5 2 33 160450 980 1 1 34 195989 1100 1.5 1 35 999900 3250 4 4 36 225340 1150 2 2 COONO 0 6 3681 Good No None 6 2.2 4.3 No 1.09 0 8 3383 Poor Yes None 8 1.79 4.7 No 2.08 0 23 3547 Fair No Garden 8 2.64 4.9 No 1.12 2 47 11220 Good No Garden 8 1 1.2 Yes 2.21 0 26 3612 Good No None 7 2.27 4.3 No 1.22 37 125750 950 1.5 1 0 46 3018 Good No Deck 6 3.19 3.7 No 2.14 38 124700 890 2 1 0 43 3114 Fair No None 3 2.24 4 No 2.18 39 200500 1200 2 2 1 12 4103 Fair Yes Deck 9 2.08 4.8 Yes 1.72 40 128500 980 1 1 0 26 3837 Poor Yes None 8 1.33 4.1 No 2.1 41 174360 1100 1.5 1 1 13 3699 Excellent No Garden 7 2.88 4 No 1.37 42 179800 1210 2 1 0 40 4333 Poor Yes Deck 7 2.56 4.4 Yes 2.15 43 205450 1350 2.5 2 1 18 4904 Fair Yes Garden 7 1.47 4.7 No 169 44 779800 2600 3 4 2 25 7834 Excellent Yes Garden 9 1 1.9 No 199 45 128800 985 1.5 1 0 33 3609 Fair No None 8 2.13 2.8 Yes 1.11 46 522200 2345 3 3 1 47 7452 Fair No Pool 6 1.66 2.8 Yes 1.77 47 1173200 3250 3.5 5 2 40 12873 Poor No Deck 9 1 1.7 No 1.59 48 1824200 3875 4 5 3 43 12201 Good Yes Garden 8 1 1 Yes 2.91 49 2475200 4560 5 6 3 12 15571 Good No Garden 8 1 1 No 3.78 50 3126200 5870 5.5 7 4 44 18111 Fair Yes Pool 9 1 1 No 2
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Enhanced Discovering Computers 2017 (Shelly Cashm…
Enhanced Discovering Computers 2017 (Shelly Cashm…
Computer Science
ISBN:
9781305657458
Author:
Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:
Cengage Learning
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781305627482
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781285196145
Author:
Steven, Steven Morris, Carlos Coronel, Carlos, Coronel, Carlos; Morris, Carlos Coronel and Steven Morris, Carlos Coronel; Steven Morris, Steven Morris; Carlos Coronel
Publisher:
Cengage Learning
New Perspectives on HTML5, CSS3, and JavaScript
New Perspectives on HTML5, CSS3, and JavaScript
Computer Science
ISBN:
9781305503922
Author:
Patrick M. Carey
Publisher:
Cengage Learning
Principles of Information Systems (MindTap Course…
Principles of Information Systems (MindTap Course…
Computer Science
ISBN:
9781285867168
Author:
Ralph Stair, George Reynolds
Publisher:
Cengage Learning
Np Ms Office 365/Excel 2016 I Ntermed
Np Ms Office 365/Excel 2016 I Ntermed
Computer Science
ISBN:
9781337508841
Author:
Carey
Publisher:
Cengage