I am trying to understand time complexity and recurrence relations. Can you explain in detail the time complexity and recurrence relation of the mergesort algorithm and how you come to that answer? Can you also show how the lines of code get you to the answer for time complexity and the recurrence relation? Here is the Mergesort Algorithm code. // C# program for Merge Sort using System;   class GfG {       // Merges two subarrays of []arr.     // First subarray is arr[l..m]     // Second subarray is arr[m+1..r]     static void merge(int[] arr, int l, int m, int r)     {         // Find sizes of two         // subarrays to be merged         int n1 = m - l + 1;         int n2 = r - m;           // Create temp arrays         int[] L = new int[n1];         int[] R = new int[n2];         int i, j;           // Copy data to temp arrays         for (i = 0; i < n1; ++i)             L[i] = arr[l + i];         for (j = 0; j < n2; ++j)             R[j] = arr[m + 1 + j];           // Merge the temp arrays           // Initial indexes of first         // and second subarrays         i = 0;         j = 0;           // Initial index of merged         // subarray array         int k = l;         while (i < n1 && j < n2) {             if (L[i] <= R[j]) {                 arr[k] = L[i];                 i++;             }             else {                 arr[k] = R[j];                 j++;             }             k++;         }           while (i < n1) {             arr[k] = L[i];             i++;             k++;         }           while (j < n2) {             arr[k] = R[j];             j++;             k++;         }     }       // Main function that     // sorts arr[l..r] using     // merge()     static void mergeSort(int[] arr, int l, int r)     {         if (l < r) {               // Find the middle point             int m = l + (r - l) / 2;               // Sort first and second halves             mergeSort(arr, l, m);             mergeSort(arr, m + 1, r);               // Merge the sorted halves             merge(arr, l, m, r);         }     }       // A utility function to     // print array of size n     static void printArray(int[] arr)     {         int n = arr.Length;         for (int i = 0; i < n; ++i)             Console.Write(arr[i] + " ");         Console.WriteLine();     }       // Driver code     public static void Main(String[] args)     {         int[] arr = { 12, 11, 13, 5, 6, 7 };         Console.WriteLine("Given array is");         printArray(arr);         mergeSort(arr, 0, arr.Length - 1);         Console.WriteLine("\nSorted array is");         printArray(arr);     } }

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

I am trying to understand time complexity and recurrence relations. Can you explain in detail the time complexity and recurrence relation of the mergesort algorithm and how you come to that answer? Can you also show how the lines of code get you to the answer for time complexity and the recurrence relation? Here is the Mergesort Algorithm code.

// C# program for Merge Sort

using System;

 

class GfG {

 

    // Merges two subarrays of []arr.

    // First subarray is arr[l..m]

    // Second subarray is arr[m+1..r]

    static void merge(int[] arr, int l, int m, int r)

    {

        // Find sizes of two

        // subarrays to be merged

        int n1 = m - l + 1;

        int n2 = r - m;

 

        // Create temp arrays

        int[] L = new int[n1];

        int[] R = new int[n2];

        int i, j;

 

        // Copy data to temp arrays

        for (i = 0; i < n1; ++i)

            L[i] = arr[l + i];

        for (j = 0; j < n2; ++j)

            R[j] = arr[m + 1 + j];

 

        // Merge the temp arrays

 

        // Initial indexes of first

        // and second subarrays

        i = 0;

        j = 0;

 

        // Initial index of merged

        // subarray array

        int k = l;

        while (i < n1 && j < n2) {

            if (L[i] <= R[j]) {

                arr[k] = L[i];

                i++;

            }

            else {

                arr[k] = R[j];

                j++;

            }

            k++;

        }

 

        while (i < n1) {

            arr[k] = L[i];

            i++;

            k++;

        }

 

        while (j < n2) {

            arr[k] = R[j];

            j++;

            k++;

        }

    }

 

    // Main function that

    // sorts arr[l..r] using

    // merge()

    static void mergeSort(int[] arr, int l, int r)

    {

        if (l < r) {

 

            // Find the middle point

            int m = l + (r - l) / 2;

 

            // Sort first and second halves

            mergeSort(arr, l, m);

            mergeSort(arr, m + 1, r);

 

            // Merge the sorted halves

            merge(arr, l, m, r);

        }

    }

 

    // A utility function to

    // print array of size n

    static void printArray(int[] arr)

    {

        int n = arr.Length;

        for (int i = 0; i < n; ++i)

            Console.Write(arr[i] + " ");

        Console.WriteLine();

    }

 

    // Driver code

    public static void Main(String[] args)

    {

        int[] arr = { 12, 11, 13, 5, 6, 7 };

        Console.WriteLine("Given array is");

        printArray(arr);

        mergeSort(arr, 0, arr.Length - 1);

        Console.WriteLine("\nSorted array is");

        printArray(arr);

    }

}

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Potential Method of Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education