H.W.: Q1: Consider steady two-dimensional heat transfer in a long solid body whose cross section is given in the figure. The temperatures at the selected nodes and the thermal conditions at the boundaries are as shown. The thermal conductivity of the body is k = 45 W/m - °C, and heat is generated in the body uniformly at a rate of g = 6 x 106 W/m3. Using the finite difference method with a mesh size of Ax = 4y = 5.0 cm, determine (a) the temperatures at nodes 1, 2, and 3 and (b) the rate of heat loss from the bottom surface through a 1-m-long section of the body. 200°C 5 cm 5 cm g=6x 10 W/m² 260 3 240 305 290 Insulation O Convection T₂= 20°C, h = 50 W/m². C 350°C 325

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
H.W.:
Q1: Consider steady two-dimensional heat transfer in a long solid body whose cross section is
given in the figure. The temperatures at the selected nodes and the thermal conditions at the
boundaries are as shown. The thermal conductivity of the body is k = 45 W/m. °C, and heat is
generated in the body uniformly at a rate of g = 6 x 106 W/m3. Using the finite difference
method with a mesh size of Ax = Ay = 5.0 cm, determine (a) the temperatures at nodes 1, 2, and
3 and (b) the rate of heat loss from the bottom surface through a 1-m-long section of the body.
.
200°C
5 cm
5 cm
g=6x 10 W/m²
260
3
240
305
290
Insulation
1
Convection
T₂= 20°C, h= 50 W/m² °C
350°C
325
Transcribed Image Text:H.W.: Q1: Consider steady two-dimensional heat transfer in a long solid body whose cross section is given in the figure. The temperatures at the selected nodes and the thermal conditions at the boundaries are as shown. The thermal conductivity of the body is k = 45 W/m. °C, and heat is generated in the body uniformly at a rate of g = 6 x 106 W/m3. Using the finite difference method with a mesh size of Ax = Ay = 5.0 cm, determine (a) the temperatures at nodes 1, 2, and 3 and (b) the rate of heat loss from the bottom surface through a 1-m-long section of the body. . 200°C 5 cm 5 cm g=6x 10 W/m² 260 3 240 305 290 Insulation 1 Convection T₂= 20°C, h= 50 W/m² °C 350°C 325
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY