For an ideal gas of classical non- interacting atoms in thermal equilibrium, the Cartesian component of the velocity are statistically independent. In three dimensions, the probability density distribution of the velocity is: where σ² = КВТ m P(Vx, Vy, Vz) = (2nо²)-³/² exp 20² 1. Show that the probability density of the velocity is normalized. 2. Find an expression of the arithmetic average of the speed. 3. Find and expression of the root - mean-square value of the speed. 4. Estimate the standard deviation of the speed.
For an ideal gas of classical non- interacting atoms in thermal equilibrium, the Cartesian component of the velocity are statistically independent. In three dimensions, the probability density distribution of the velocity is: where σ² = КВТ m P(Vx, Vy, Vz) = (2nо²)-³/² exp 20² 1. Show that the probability density of the velocity is normalized. 2. Find an expression of the arithmetic average of the speed. 3. Find and expression of the root - mean-square value of the speed. 4. Estimate the standard deviation of the speed.
Related questions
Question
![For an ideal gas of classical non- interacting atoms in thermal equilibrium, the Cartesian
component of the velocity are statistically independent. In three dimensions, the probability
density distribution of the velocity is:
where σ² =
kBT
m
P(Vx, Vy, Vz) = (2nо²)-³/² exp
20²
1. Show that the probability density of the velocity is normalized.
2. Find an expression of the arithmetic average of the speed.
3. Find and expression of the root-mean-square value of the speed.
4. Estimate the standard deviation of the speed.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0d23c93b-870e-4ad1-8eae-60e3d2381ea8%2F6ebc9161-0f6b-417e-9713-cb101099233e%2Fhtrxlwd_processed.png&w=3840&q=75)
Transcribed Image Text:For an ideal gas of classical non- interacting atoms in thermal equilibrium, the Cartesian
component of the velocity are statistically independent. In three dimensions, the probability
density distribution of the velocity is:
where σ² =
kBT
m
P(Vx, Vy, Vz) = (2nо²)-³/² exp
20²
1. Show that the probability density of the velocity is normalized.
2. Find an expression of the arithmetic average of the speed.
3. Find and expression of the root-mean-square value of the speed.
4. Estimate the standard deviation of the speed.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)