Consider a world in which there are only two dates: 0 and 1. At date 1 there are three possible states of nature: a good weather state (G), a fair weather state (F), and a bad weather state (B). Denote S₁ as the set of these states, i.e., 8₁ € S₁ = {G, F, B}. The state at date zero is known. Denote probabilities of the three states as π = (0.4, 0.3, 0.3). There is one non-storable consumption good, apple. There are three consumers in this economy. Their preferences over apples are exactly the same and are given by the following expected utility function & + β Σ πou (chi), 81 ES1 where subscript k = 1, 2, 3 denotes each consumer. In period 0, the three consumers have a linear utility and, in period 1, the three consumers have the same instantaneous utility function: cl-7 u (c) = where y = 0.2 (the coefficient of relative risk aversion). The consumers' time discount factor, ß, is 0.98. The consumers differ in their endowments, which are given in the table below: Consumer 1 Consumer 2 Consumer 3 Endowments t = 1 G F B 3.2 1.8 0.9 1.6 1.2 0.4 1.2 0.6 0.2 t=0 80 0.4 1.2 2.0 Assume that atomic (Arrow-Debreu) securities are traded in this economy. One unit of 'G security' sells at time 0 at a price qc and pays one unit of consumption at time 1 if state 'G' occurs and nothing otherwise. One unit of 'F security' sells at time 0 at a price qF and pays one unit of consumption at time 1 if state 'F' occurs and nothing otherwise. One unit of 'B security' sells at time 0 at a price qв and pays one unit of consumption in state 'B' only. 1. Write down the consumer's budget constraint for all times and states, and define a Market Equilibrium in this economy. Is there any trade of atomic (Arrow-Debreu) securities possible in this economy? 2. Write down the Lagrangian for the consumer's optimisation problem, find the first order necessary conditions, and characterise the equilibrium (i.e., compute the op- timal allocations and prices defined in the equilibrium). ( 3. At the equilibrium, calculate the forward price and risk premium for each atomic

ENGR.ECONOMIC ANALYSIS
14th Edition
ISBN:9780190931919
Author:NEWNAN
Publisher:NEWNAN
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
icon
Related questions
Question
Question 4. Arrow-Debreu
Economy
Consider a world in which there are only two dates: 0 and 1. At date 1 there are three
possible states of nature: a good weather state (G), a fair weather state (F), and a bad
weather state (B). Denote S₁ as the set of these states, i.e., 8₁ € $₁ = {G, F, B}. The
state at date zero is known. Denote probabilities of the three states as π = (0.4, 0.3, 0.3).
There is one non-storable consumption good, apple. There are three consumers in
this economy. Their preferences over apples are exactly the same and are given by the
following expected utility function
& + β Σ Tsu (c),
$1 ES1
where subscript k = 1, 2, 3 denotes each consumer. In period 0, the three consumers have
a linear utility and, in period 1, the three consumers have the same instantaneous utility
function:
c²-y
u (c)
=
where y = 0.2 (the coefficient of relative risk aversion). The consumers' time discount
factor, 3, is 0.98.
The consumers differ in their endowments, which are given in the table below:
Endowments
t=0
t = 1
So
G F B
0.4
3.2 1.8 0.9
Consumer 1
Consumer 2
1.2
1.6 1.2 0.4
Consumer 3 2.0 1.2 0.6 0.2
Assume that atomic (Arrow-Debreu) securities are traded in this economy. One unit
of 'G security' sells at time 0 at a price qc and pays one unit of consumption at time 1 if
state 'G' occurs and nothing otherwise. One unit of 'F security' sells at time 0 at a price
qF and pays one unit of consumption at time 1 if state 'F' occurs and othing otherwise.
One unit of 'B security' sells at time 0 at a price qв and pays one unit of consumption in
state 'B' only.
1. Write down the consumer's budget constraint for all times and states, and define a
Market Equilibrium in this economy. Is there any trade of atomic (Arrow-Debreu)
securities possible in this economy?
2. Write down the Lagrangian for the consumer's optimisation problem, find the first
order necessary conditions, and characterise the equilibrium (i.e., compute the op-
timal allocations and prices defined in the equilibrium). (
3. At the equilibrium, calculate the forward price and risk premium for each atomic
security. What do your results suggest about the consumers' preference? (
Transcribed Image Text:Question 4. Arrow-Debreu Economy Consider a world in which there are only two dates: 0 and 1. At date 1 there are three possible states of nature: a good weather state (G), a fair weather state (F), and a bad weather state (B). Denote S₁ as the set of these states, i.e., 8₁ € $₁ = {G, F, B}. The state at date zero is known. Denote probabilities of the three states as π = (0.4, 0.3, 0.3). There is one non-storable consumption good, apple. There are three consumers in this economy. Their preferences over apples are exactly the same and are given by the following expected utility function & + β Σ Tsu (c), $1 ES1 where subscript k = 1, 2, 3 denotes each consumer. In period 0, the three consumers have a linear utility and, in period 1, the three consumers have the same instantaneous utility function: c²-y u (c) = where y = 0.2 (the coefficient of relative risk aversion). The consumers' time discount factor, 3, is 0.98. The consumers differ in their endowments, which are given in the table below: Endowments t=0 t = 1 So G F B 0.4 3.2 1.8 0.9 Consumer 1 Consumer 2 1.2 1.6 1.2 0.4 Consumer 3 2.0 1.2 0.6 0.2 Assume that atomic (Arrow-Debreu) securities are traded in this economy. One unit of 'G security' sells at time 0 at a price qc and pays one unit of consumption at time 1 if state 'G' occurs and nothing otherwise. One unit of 'F security' sells at time 0 at a price qF and pays one unit of consumption at time 1 if state 'F' occurs and othing otherwise. One unit of 'B security' sells at time 0 at a price qв and pays one unit of consumption in state 'B' only. 1. Write down the consumer's budget constraint for all times and states, and define a Market Equilibrium in this economy. Is there any trade of atomic (Arrow-Debreu) securities possible in this economy? 2. Write down the Lagrangian for the consumer's optimisation problem, find the first order necessary conditions, and characterise the equilibrium (i.e., compute the op- timal allocations and prices defined in the equilibrium). ( 3. At the equilibrium, calculate the forward price and risk premium for each atomic security. What do your results suggest about the consumers' preference? (
Suppose that instead of atomic (Arrow-Debreu) securities there are three linearly
independent securities, a riskless bond, a stock, and a one-period put option on this stock
available for trade in this economy. The riskless bond pays 1 apple in every state, the
stock pays 2, 1 and 0 apples in G, F and B, respectively. The put option has a strike
price of 1.
4. Write down the budget constraint for each consumer using the newly available
securities.
5. Write down the Lagrangian for the consumer's optimisation problem, find the first
order necessary conditions, and characterise the equilibrium (i.e., compute equilib-
rium allocations and prices of the newly available securities).
6. Now, price the newly available securities using the atomic prices from part 2. Com-
ment on your results in light of the arbitrage-free markets.
Transcribed Image Text:Suppose that instead of atomic (Arrow-Debreu) securities there are three linearly independent securities, a riskless bond, a stock, and a one-period put option on this stock available for trade in this economy. The riskless bond pays 1 apple in every state, the stock pays 2, 1 and 0 apples in G, F and B, respectively. The put option has a strike price of 1. 4. Write down the budget constraint for each consumer using the newly available securities. 5. Write down the Lagrangian for the consumer's optimisation problem, find the first order necessary conditions, and characterise the equilibrium (i.e., compute equilib- rium allocations and prices of the newly available securities). 6. Now, price the newly available securities using the atomic prices from part 2. Com- ment on your results in light of the arbitrage-free markets.
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Probability and Expected Value
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
ENGR.ECONOMIC ANALYSIS
ENGR.ECONOMIC ANALYSIS
Economics
ISBN:
9780190931919
Author:
NEWNAN
Publisher:
Oxford University Press
Principles of Economics (12th Edition)
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (MindTap Course List)
Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning
Managerial Economics: A Problem Solving Approach
Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning
Managerial Economics & Business Strategy (Mcgraw-…
Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education