Assume that someone has inherited 2,000 bottles of wine from a rich uncle. He or she intends to drink these bottles over the next 40 years. Suppose that this person’s utility function for wine is given by u(c(t)) = (c(t))0.5, where c(t) is each instant t consumption of bottles. Assume also this person discounts future consumption at the rate δ = 0.05. Hence this person’s goal is to maximize 0ʃ40 e–0.05tu(c(t))dt = 0ʃ40 e–0.05t(c(t))0.5dt. Let x(t) represent the number of bottle of wine remaining at time t, constrained by x(0) = 2,000, x(40) = 0 and dx(t)/dt = – c(t): the stock of remaining bottles at each instant t is decreased by the consumption of bottles at instant t. The current value Hamiltonian expression yields: H = e–0.05t(c(t))0.5 + λ(– c(t)) + x(t)(dλ/dt). This person’s wine consumption decreases at a continuous rate of ??? percent per year. The number of bottles being consumed in the 30th year is approximately ?
Assume that someone has inherited 2,000 bottles of wine from a rich uncle. He or she intends to drink these bottles over the next 40 years. Suppose that this person’s utility function for wine is given by u(c(t)) = (c(t))0.5, where c(t) is each instant t consumption of bottles. Assume also this person discounts future consumption at the rate δ = 0.05. Hence this person’s goal is to maximize 0ʃ40 e–0.05tu(c(t))dt = 0ʃ40 e–0.05t(c(t))0.5dt. Let x(t) represent the number of bottle of wine remaining at time t, constrained by x(0) = 2,000, x(40) = 0 and dx(t)/dt = – c(t): the stock of remaining bottles at each instant t is decreased by the consumption of bottles at instant t. The current value Hamiltonian expression yields: H = e–0.05t(c(t))0.5 + λ(– c(t)) + x(t)(dλ/dt). This person’s wine consumption decreases at a continuous rate of ??? percent per year. The number of bottles being consumed in the 30th year is approximately ???
Step by step
Solved in 3 steps with 3 images