- Consider a particle of mass m confined in a one-dimensional infinite square well of width a. The particle is initially in the ground state. At time t = 7, a perturbing potential V₁ (t) = Vod(t − T) is turned on in the region 0 ≤ x ≤ b with b < a. Find the probability for the particle to make a transition to the 1st excited state.
Q: Normalize the wave function 4(x) = [Nr2(L−x) 0<x<L 0 elsewhere What is (x) for this wave function?
A:
Q: Suppose you have particle that is trapped in a harmonic potential V=12mω2x2. The particle is in its…
A:
Q: For a particle that exists in a state described by the wavefunction Ψ(t, x), imagine you are…
A:
Q: Minimize the expectation value of the hamiltonian for the one dimensional quantum oscillator using…
A: Sure, The minimization of the expectation value of the Hamiltonian for the one-dimensional quantum…
Q: What are the energy eigenvalues for a particle that has mass m and is confined inside of a…
A: We are given mass of particle. We are also given that particle in in 3D box. Its length along x…
Q: P2. Consider the motion of a particle of mass m moving in a 3-d potential, V(x, y, x) = k(x2 + y2 +…
A:
Q: Consider a particle in the infinite potential well at -a <I < a. The particle is in a superposition…
A: The given wave function and its complex conjugate be defined as,…
Q: Suppose that the probability of observing |0⟩ in the state |ϕ1⟩ is 1/4 and the probability of…
A:
Q: Let ¥₁ (x) and ↳₂2 (x) be normalized stationary states (energy eigenfunctions) of an one-…
A:
Q: Calculate the uncertainties dr = V(r2) and dp = Vp?) for a particle confined in the region -a a, r…
A: As we can see the given wave function is normalised and in outside region it's zero. Therefore This…
Q: As a 1-dimensional problem, you are given a particle of mass, m, confined to a box of width, L. The…
A:
Q: energy levels En of the anharmonic oscillator in the first order in the pa- rameter 3 are given by:…
A: We can use the direct results here of expectation value of x4 in nth state.
Q: The displacement x of a classical harmonic oscillator as a function of time is given by x= A…
A: The probability ω(ϕ)dϕ that ϕ lies in the range between ϕ & ϕ+dϕ is then simplyω(ϕ)dϕ=(2π)-1dϕWe…
Q: provided that a particle is described by the normalized wavefunction ψ(x)=(2a/π)1/4e-ax^2 with…
A:
Q: A particle with the energy E is incident from the left on a potential step of height Uo and a…
A: This problem is a combination of step and delta function. There are two regions here, one is x<0,…
Q: Consider a particle with the following wave-function: ,xL and L and A are constants. (a) What is the…
A:
Q: Consider a classical particle of mass m moving in one spatial dimension with position x and momentum…
A:
Q: Show that is a solution to the time-independent Schrödinger equation, with potential V(x) = 2h²² and…
A: Given: The potential of the particle is Vx = 2 ħ2 m x2 The energy Eigenvalue of the particle is E =…
Q: b1 (x) = A sin () L
A:
Q: Suppose you have a "box" in which each particle may occupy any of 10 single-particle states. For…
A: Each particle may occupy any of 10 single-particle states, each with zero energy. Er1=0 for 1≤i≤10…
Q: Consider a particle of mass m moving in one dimension with wavefunction $(x) Vi for sin L - and zero…
A: The momentum operator is given by Therefore the operator is given by Where The given wave…
Q: Suppose you have a "box" in which each particle may occupy any of 10 single-particle states. For…
A: Given that we have a "box" in which each particle may occupy any of 10 single-particle states. For…
Q: 25. Consider a particle of mass m in a one-dimensional infinite square well with V (x) = 0 for 0 ≤ x…
A: We are asked to calculate the probability that a particle starting in the ground state will…
Q: Use the time-dependent Schroedinger equation to calculate the period (in seconds) of the…
A: Mass of particle m = 9.109 × 10− 31 kg Width of the box a = 1.2 ×10− 10 m
Q: In the region 0 w, /3 (x) = 0. (a) By applying the continuity conditions at.x = a, find c and d in…
A: Given that the wavefunction of a particle is , ψ1x=-bx2-a2 0≤x≤aψ2x=x-d2-c…
Q: Question A6 Consider an infinite square well with V = 0 in the interval -L/2 < x < L/2, and V → ∞…
A:
Q: 2) Consider a particle in a three-dimensional harmonic oscillator potential V (r, y, z) = 5mw²(r² +…
A: The energy for state Ψ201 can be defined as,
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
- 6QM Please answer question throughly and detailed.Suppose we had a classical particle in a frictionless box, bouncing back and forth at constant speed. The probability density of the position of the particle in soma box of length L is given by: 0 ans-fawr (7) p(x)= 0 x L a. Sketch the probability density as a function of position b. What must A be in order for p(x) to be normalized? Remember that you are welcome to use resources to solve integrals such as Wolfram Alpha, a table of integrals etc.A particle with mass m is in the state mx +iat 2h V (x, t) = Ae where A and a are positive real constants. Calculate the expectation value of (p).
- The following Eigen function is a typical solution of the time-independent Schrödinger equation and satisfies boundary conditions for a particle in a confined space of a certain length. y(x) = sin (~77) (a) Plot the wave function as a function of x for L = 30 cm and n = 1, 2, 3 and 4. Note: You will need to have 4 plots in the same graph. (b) On a separate graph, plot the probability density (112) as a function of x using the conditions specified in part (a). Note: You will need to have 4 plots in the same graph. (c) Report your observations for parts (a) and (b)Consider the one-dimensional step-potential V (x) = {0 , x < 0; V0 , x > 0}(a) Calculate the probability R that an incoming particle propagating from the x < 0 region to the right will reflect from the step.(b) Calculate the probability T that the particle will be transmitted across the step.(c) Discuss the dependence of R and T on the energy E of the particle, and show that always R+T = 1.[Hints: Use the expression J = (-i*hbar / 2m)*(ψ*(x)ψ′(x) − ψ*'(x)ψ(x)) for the particle current to define current carried by the incoming wave Ji, reflected wave Jr, and transmitted wave Jt across the step.For a simple plane wave ψ(x) = eikx, the current J = hbar*k/m = p/m = v equals the classical particle velocity v. The reflection probability is R = |Jr/Ji|, and the transmission probability is T = |Jt/Ji|. You need to write and solve the Schrodinger equation in regions x < 0 and x > 0 separately, and connect the solutions via boundary conditions at x = 0 (ψ(x) and ψ′(x) must be…3
- A qubit is in state |) = o|0) +₁|1) at time t = 0. It then evolves according to the Schrödinger equation with the Hamiltonian Ĥ defined by its action on the basis vectors: Ĥ0) = 0|0) and Ĥ|1) = E|1), where E is a constant with units of energy. a) Solve for the state of the qubit at time t. b) Find the probability to observe the qubit in state 0 at time t. Explain the result by referring to the way that the time-evolution transforms the Bloch sphere.consider an infinite square well with sides at x= -L/2 and x = L/2 (centered at the origin). Then the potential energy is 0 for [x] L/2 Let E be the total energy of the particle. =0 (a) Solve the one-dimensional time-independent Schrodinger equation to find y(x) in each region. (b) Apply the boundary condition that must be continuous. (c) Apply the normalization condition. (d) Find the allowed values of E. (e) Sketch w(x) for the three lowest energy states. (f) Compare your results for (d) and (e) to the infinite square well (with sides at x=0 and x=L)Prove in the canonical ensemble that, as T ! 0, the microstate probability ℘m approaches a constant for any ground state m with lowest energy E0 but is otherwise zero for Em > E0 . What is the constant?