A particle with the energy E is incident from the left on a potential step of height Uo and a delta-functional peak at r = 0: U (x) = 0, I <0 U (x) = Uo + V 8(x), Calculate the transmission and reflection coefficients at the energies E > Uo
Q: Calculate the transmission and reflection coefficients for an electron with kinetic energy 8 eV and…
A: Given data- The initial kinetic energy of the electron is E0=8 eV =12.8×10-19 J The potential…
Q: Calculate the uncertainties dr = V(r2) and dp = Vp?) for a particle confined in the region -a a, r…
A: As we can see the given wave function is normalised and in outside region it's zero. Therefore This…
Q: As a 1-dimensional problem, you are given a particle of mass, m, confined to a box of width, L. The…
A:
Q: Calculate the period of oscillation of ?(x,t) for a particle of mass 1.67 × 10-27 kg in the first…
A: Given: m=1.67×10-27kg, a=1.68×10-15m The energy of a particle in a box of width a is defined by :…
Q: The displacement x of a classical harmonic oscillator as a function of time is given by x= A…
A: The probability ω(ϕ)dϕ that ϕ lies in the range between ϕ & ϕ+dϕ is then simplyω(ϕ)dϕ=(2π)-1dϕWe…
Q: The wave function of free particle initially at time t=0 is given by the wave packet (x,0) =…
A:
Q: An electron has a kinetic energy of 12.6 eV. The electron is incident upon a rectangular barrier of…
A:
Q: Consider a potential barrierV(x) = {0, xVo, find the transmission coefficient, T
A:
Q: A particle of mass m moves inside a potential energy landscape U (2) = X|2| along the z axis. Part…
A: To determine the units of the constant λ, we can use the given formula for potential energy U(z) and…
Q: Find the normalize constant A and the average value of the kinetic energy of a particle in box has…
A:
Q: We have a free particle in one dimension at a time t = 0, the initial wave function is V (x,0) = Ae…
A:
Q: We have a free particle in one dimension at a time t = 0, the initial wave function is V (x, 0) =…
A: To answer the question, we first write the Normalization condition for a wave function, and then use…
Q: Problem 1: The wavefunction for a particle is shown below. (a) What is the normalization constant A?…
A:
Q: (WF-3) Consider the two normalized wave function shown below. Calculate the expectation value for…
A:
Q: Evaluate the following expectation values: (a) ⟨ℓ,m1∣Lx∣ℓ,m2⟩ (b) ⟨ℓ,m1∣Ly∣ℓ,m2⟩
A:
Q: Consider a particle with 1-D wave-function (x) = kexp(-x²). Sketch (x),
A:
Q: Show that is a solution to the time-independent Schrödinger equation, with potential V(x) = 2h²² and…
A: Given: The potential of the particle is Vx = 2 ħ2 m x2 The energy Eigenvalue of the particle is E =…
Q: Consider a particle of mass m moving in one dimension with wavefunction $(x) Vi for sin L - and zero…
A: The momentum operator is given by Therefore the operator is given by Where The given wave…
Q: Consider the wavefunction (4.5) with mi an integer and o < ¢< 2m. Find the normalization factor for…
A:
Q: Let y, (x) denote the orthonormal stationary states of a system corresponding to the energy En.…
A: Expectation value of energy
Q: Use the time-dependent Schroedinger equation to calculate the period (in seconds) of the…
A: Mass of particle m = 9.109 × 10− 31 kg Width of the box a = 1.2 ×10− 10 m
Q: We have a free particle in one dimension at a time t 0, the initial wave function is V(x,0) =…
A:
Q: In the region 0 w, /3 (x) = 0. (a) By applying the continuity conditions at.x = a, find c and d in…
A: Given that the wavefunction of a particle is , ψ1x=-bx2-a2 0≤x≤aψ2x=x-d2-c…
Q: Evaluate , , △x, △px, and △x△px for the provided normalized wave function
A:
Step by step
Solved in 2 steps
- You are given a free particle (no potential) Hamiltonian Ĥ dependent wave-functions = -it 2h7² m sin(2x) e = V₁(x, t) V₂(x, t) 2 sin(x)e -ithm + sin(2x)e¯ What would be results of kinetic energy measurements for these two wave-functions? Give only possible outcomes, for example, it is possible to get the following values 5, 6, and 7. No need to provide corresponding probabilities. ħ² d² 2m dx2 and two time- -it 2hr 2 mAn electron has a kinetic energy of 13.3 eV. The electron is incident upon a rectangular barrier of height 21.5 eV and width 1.00 nm. If the electron absorbed all the energy of a photon of green light (with wavelength 546 nm) at the instant it reached the barrier, by what factor would the electron's probability of tunneling through the barrier increase?Calculate the uncertainties dr = V(x2) and op = V(p²) for %3D a particle confined in the region -a a, r<-a. %3D
- = = An electron having total energy E 4.60 eV approaches a rectangular energy barrier with U■5.10 eV and L-950 pm as shown in the figure below. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero. Energy E U 0 i (a) Calculate this probability, which is the transmission coefficient. (Use 9.11 x 10-31 kg for the mass of an electron, 1.055 x 10-34] s for h, and note that there are 1.60 x 10-19 J per eV.) (b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.60-eV electron tunneling through the barrier to be one in one million? nmThe expectation value of a function f(x), denoted by (f(x)), is given by (f(x)) = f(x)\(x)|³dx +00 Yn(x) = where (x) is the normalised wave function. A one-dimensional box is on the x-axis in the region of 0 ≤ x ≤ L. The normalised wave functions for a particle in the box are given by -sin -8 Calculate (x) and (x²) for a particle in the nth state. n = 1, 2, 3, ....Consider the one-dimensional step-potential V (x) = {0 , x < 0; V0 , x > 0}(a) Calculate the probability R that an incoming particle propagating from the x < 0 region to the right will reflect from the step.(b) Calculate the probability T that the particle will be transmitted across the step.(c) Discuss the dependence of R and T on the energy E of the particle, and show that always R+T = 1.[Hints: Use the expression J = (-i*hbar / 2m)*(ψ*(x)ψ′(x) − ψ*'(x)ψ(x)) for the particle current to define current carried by the incoming wave Ji, reflected wave Jr, and transmitted wave Jt across the step.For a simple plane wave ψ(x) = eikx, the current J = hbar*k/m = p/m = v equals the classical particle velocity v. The reflection probability is R = |Jr/Ji|, and the transmission probability is T = |Jt/Ji|. You need to write and solve the Schrodinger equation in regions x < 0 and x > 0 separately, and connect the solutions via boundary conditions at x = 0 (ψ(x) and ψ′(x) must be…