Standard Normal Table (Page 2) n POSITIVE z Scores 0 2 Standard Normal (z) Distribution: Cumulative Area from the LEFT Z .00 .01 02 .03 .04 .05 .06 .07 .08 .09 0.0 5000 5040 5080 5120 5160 .5199 .5239 5279 5319 5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 5714 5753 0.2 5793 5832 5871 5910 .5948 5987 .6026 6064 6103 .6141 0.3 6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 6480 .6517 0.4 .6554 6591 .6628 .6664 6700 6736 .6772 .6808 6844 .6879 0.5 .6915 6950 6985 .7019 .7054 7088 .7123 7157 .7190 .7224 0.6 .7257 .7291 .7324 7357 .7389 7422 .7454 .7486 .7517 .7549 0.7 .7580 .7611 .7642 .7673 7704 .7734 .7764 .7794 .7823 .7852 0.8 .7881 7910 7939 7967 7995 8023 .8051 8078 .8106 8133 0.9 8159 .8186 .8212 8238 .8264 .8289 .8315 .8340 .8365 .8389 1.0 8413 .8438 8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 .8665 8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 1.2 .8849 8869 8888 8907 .8925 8944 .8962 .8980 .8997 .9015 1.3 9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.4 .9192 9207 9222 .9236 9251 9265 .9279 .9292 .9306 .9319 1.5 9332 9345 9357 .9370 .9382 .9394 .9406 .9418 .9429 9441 1.6 .9452 9463 9474 .9484 9495 .9505 .9515 9525 .9535 .9545 1.7 .9554 .9564 .9573 9582 9591 .9599 .9608 .9616 .9625 .9633 1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 9693 9699 .9706 1.9 9713 .9719 .9726 9732 .9738 .9744 .9750 .9756 9761 .9767 2.0 .9772 .9778 .9783 9788 9793 .9798 .9803 ..9808 9812 .9817 2.1 .9821 .9826 9830 9834 .9838 .9842 .9846 .9850 .9854 .9857 2.2 9861 .9864 9868 9871 .9875 .9878 .9881 .9884 .9887 .9890 2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2.4 .9918 9920 9922 9925 .9927 .9929 .9931 9932 9934 .9936 2.5 .9938 9940 9941 9943 9945 .9946 .9948 .9949 • .9951 9952 2.6 9953 9955 .9956 9957 9959 .9960 .9961 9962 .9963 9964 Assume that human body temperatures are normally distributed with a mean of 98.22°F and a standard deviation of 0.62°F. a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate? b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0 % of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the subject is not really sick.) Click to view page 1 of the table. Click to view page 2 of the table. a. The percentage of normal and healthy persons considered to have a fever is 0.01 %. (Round to two decimal places as needed.) Does this percentage suggest that a cutoff of 100.6°F is appropriate? OA. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever. B. No, because there is a large probability that a normal and healthy person would be considered to have a fever. c. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever. OD. No, because there is a small probability that a normal and healthy person would be considered to have a fever. b. The minimum temperature for requiring further medical tests should be (Round to two decimal places as needed.) Standard Normal Table (Page 1) NEGATIVE z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 02 03 .04 06 07 08 09 -3.50 F if we want only 5.0% of healthy people to exceed it. and lower 0001 -34 0003 0003 0003 0003 0003 0003 0003 .0003 0003 -3.3 0005 0005 0005 0004 0004 .0004 .0004 .0004 .0004 0003 -32 0007 0007 0006 0006 0006 0006 0006 0005 0005 0005 0010 0009 0009 0009 0008 0008 0008 .0008 .0007 0007 -3.0 0013 0013 0013 0012 0012 .com .com .0011 0010 0010 -2.9 0019 0018 0018 0017 0016 0016 0015 0015 0014 0014 -2.8 0026 0025 0024 0023 0023 0022 0021 .0021 .0020 0019 -27 0035 0034 .0033 0032 0031 .0030 0029 .0028 0027 0026 -26 .0047 0045 0044 0043 0041 0040 0039 0038 0037 0036 -25 0062 0060 0059 0057 0055 0054 0052 0051 0049 0048 -24 0082 .0080 0078 0075 0.0073 .0071 0069 .0068 A0066 0064 -23 0107 0104 0102 0099 0096 .0094 .0089 .0087 -22 0139 0136 0132 0129 0125 0119 0113 ono -21 0179 0174 0170 0166 0162 0158 0154 0150 0146 0143 -20 0228 0222 0217 0212 0207 0202 0197 0192 0188 0183 0287 0281 0274 0268 0262 0256 0250 0244 0239 0233 -1.8 0359 0351 0344 0336 0329 .0322 0314 .0307 0294 -17 0446 0436 0427 0418 0409 0401 .0392 0384 0367 -1.6 0548 0537 0526 0505 -.0495 0485 0475 0465 0455 -1.5 0668 0655 0643 0630 0618 0606 0594 0582 .0571 0559 <-14 0808 0793 0778 0764 0749 0735 0721 0708 0694 0681 -13 0968 0951 0934 0918 0901 0885 0869 0853 0838 0823 -12 1151 1131 1112 1093 3075 1056 3038 1020 3003 0985 -11 1357 1335 1314 1292 1271 1251 1230 1210 1190 1170 -10 1587 1562 1539 1515 3492 3469 3446 3423 3401 1379 3841 1814 1788 1762 1736 1711 3685 1660 1635 1611 2119 2090 2061 2033 2005 1977 1949 1922 1894 1867 -0.7 2420 2389 2358 2327 2296 2266 2236 2206 2177 2148 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 -0.5 3085 3050 3015 2981 2912 2877 2843 2810 2776 -0.4 3446 3409 3372 3336 3300 3264 3228 3192 3156 3121 ×
Standard Normal Table (Page 2) n POSITIVE z Scores 0 2 Standard Normal (z) Distribution: Cumulative Area from the LEFT Z .00 .01 02 .03 .04 .05 .06 .07 .08 .09 0.0 5000 5040 5080 5120 5160 .5199 .5239 5279 5319 5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 5714 5753 0.2 5793 5832 5871 5910 .5948 5987 .6026 6064 6103 .6141 0.3 6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 6480 .6517 0.4 .6554 6591 .6628 .6664 6700 6736 .6772 .6808 6844 .6879 0.5 .6915 6950 6985 .7019 .7054 7088 .7123 7157 .7190 .7224 0.6 .7257 .7291 .7324 7357 .7389 7422 .7454 .7486 .7517 .7549 0.7 .7580 .7611 .7642 .7673 7704 .7734 .7764 .7794 .7823 .7852 0.8 .7881 7910 7939 7967 7995 8023 .8051 8078 .8106 8133 0.9 8159 .8186 .8212 8238 .8264 .8289 .8315 .8340 .8365 .8389 1.0 8413 .8438 8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 .8665 8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 1.2 .8849 8869 8888 8907 .8925 8944 .8962 .8980 .8997 .9015 1.3 9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.4 .9192 9207 9222 .9236 9251 9265 .9279 .9292 .9306 .9319 1.5 9332 9345 9357 .9370 .9382 .9394 .9406 .9418 .9429 9441 1.6 .9452 9463 9474 .9484 9495 .9505 .9515 9525 .9535 .9545 1.7 .9554 .9564 .9573 9582 9591 .9599 .9608 .9616 .9625 .9633 1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 9693 9699 .9706 1.9 9713 .9719 .9726 9732 .9738 .9744 .9750 .9756 9761 .9767 2.0 .9772 .9778 .9783 9788 9793 .9798 .9803 ..9808 9812 .9817 2.1 .9821 .9826 9830 9834 .9838 .9842 .9846 .9850 .9854 .9857 2.2 9861 .9864 9868 9871 .9875 .9878 .9881 .9884 .9887 .9890 2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2.4 .9918 9920 9922 9925 .9927 .9929 .9931 9932 9934 .9936 2.5 .9938 9940 9941 9943 9945 .9946 .9948 .9949 • .9951 9952 2.6 9953 9955 .9956 9957 9959 .9960 .9961 9962 .9963 9964 Assume that human body temperatures are normally distributed with a mean of 98.22°F and a standard deviation of 0.62°F. a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate? b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0 % of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the subject is not really sick.) Click to view page 1 of the table. Click to view page 2 of the table. a. The percentage of normal and healthy persons considered to have a fever is 0.01 %. (Round to two decimal places as needed.) Does this percentage suggest that a cutoff of 100.6°F is appropriate? OA. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever. B. No, because there is a large probability that a normal and healthy person would be considered to have a fever. c. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever. OD. No, because there is a small probability that a normal and healthy person would be considered to have a fever. b. The minimum temperature for requiring further medical tests should be (Round to two decimal places as needed.) Standard Normal Table (Page 1) NEGATIVE z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 02 03 .04 06 07 08 09 -3.50 F if we want only 5.0% of healthy people to exceed it. and lower 0001 -34 0003 0003 0003 0003 0003 0003 0003 .0003 0003 -3.3 0005 0005 0005 0004 0004 .0004 .0004 .0004 .0004 0003 -32 0007 0007 0006 0006 0006 0006 0006 0005 0005 0005 0010 0009 0009 0009 0008 0008 0008 .0008 .0007 0007 -3.0 0013 0013 0013 0012 0012 .com .com .0011 0010 0010 -2.9 0019 0018 0018 0017 0016 0016 0015 0015 0014 0014 -2.8 0026 0025 0024 0023 0023 0022 0021 .0021 .0020 0019 -27 0035 0034 .0033 0032 0031 .0030 0029 .0028 0027 0026 -26 .0047 0045 0044 0043 0041 0040 0039 0038 0037 0036 -25 0062 0060 0059 0057 0055 0054 0052 0051 0049 0048 -24 0082 .0080 0078 0075 0.0073 .0071 0069 .0068 A0066 0064 -23 0107 0104 0102 0099 0096 .0094 .0089 .0087 -22 0139 0136 0132 0129 0125 0119 0113 ono -21 0179 0174 0170 0166 0162 0158 0154 0150 0146 0143 -20 0228 0222 0217 0212 0207 0202 0197 0192 0188 0183 0287 0281 0274 0268 0262 0256 0250 0244 0239 0233 -1.8 0359 0351 0344 0336 0329 .0322 0314 .0307 0294 -17 0446 0436 0427 0418 0409 0401 .0392 0384 0367 -1.6 0548 0537 0526 0505 -.0495 0485 0475 0465 0455 -1.5 0668 0655 0643 0630 0618 0606 0594 0582 .0571 0559 <-14 0808 0793 0778 0764 0749 0735 0721 0708 0694 0681 -13 0968 0951 0934 0918 0901 0885 0869 0853 0838 0823 -12 1151 1131 1112 1093 3075 1056 3038 1020 3003 0985 -11 1357 1335 1314 1292 1271 1251 1230 1210 1190 1170 -10 1587 1562 1539 1515 3492 3469 3446 3423 3401 1379 3841 1814 1788 1762 1736 1711 3685 1660 1635 1611 2119 2090 2061 2033 2005 1977 1949 1922 1894 1867 -0.7 2420 2389 2358 2327 2296 2266 2236 2206 2177 2148 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 -0.5 3085 3050 3015 2981 2912 2877 2843 2810 2776 -0.4 3446 3409 3372 3336 3300 3264 3228 3192 3156 3121 ×
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman