Standard Normal Table (Page 2) n POSITIVE z Scores 0 2 Standard Normal (z) Distribution: Cumulative Area from the LEFT Z .00 .01 02 .03 .04 .05 .06 .07 .08 .09 0.0 5000 5040 5080 5120 5160 .5199 .5239 5279 5319 5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 5714 5753 0.2 5793 5832 5871 5910 .5948 5987 .6026 6064 6103 .6141 0.3 6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 6480 .6517 0.4 .6554 6591 .6628 .6664 6700 6736 .6772 .6808 6844 .6879 0.5 .6915 6950 6985 .7019 .7054 7088 .7123 7157 .7190 .7224 0.6 .7257 .7291 .7324 7357 .7389 7422 .7454 .7486 .7517 .7549 0.7 .7580 .7611 .7642 .7673 7704 .7734 .7764 .7794 .7823 .7852 0.8 .7881 7910 7939 7967 7995 8023 .8051 8078 .8106 8133 0.9 8159 .8186 .8212 8238 .8264 .8289 .8315 .8340 .8365 .8389 1.0 8413 .8438 8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 .8665 8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 1.2 .8849 8869 8888 8907 .8925 8944 .8962 .8980 .8997 .9015 1.3 9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.4 .9192 9207 9222 .9236 9251 9265 .9279 .9292 .9306 .9319 1.5 9332 9345 9357 .9370 .9382 .9394 .9406 .9418 .9429 9441 1.6 .9452 9463 9474 .9484 9495 .9505 .9515 9525 .9535 .9545 1.7 .9554 .9564 .9573 9582 9591 .9599 .9608 .9616 .9625 .9633 1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 9693 9699 .9706 1.9 9713 .9719 .9726 9732 .9738 .9744 .9750 .9756 9761 .9767 2.0 .9772 .9778 .9783 9788 9793 .9798 .9803 ..9808 9812 .9817 2.1 .9821 .9826 9830 9834 .9838 .9842 .9846 .9850 .9854 .9857 2.2 9861 .9864 9868 9871 .9875 .9878 .9881 .9884 .9887 .9890 2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2.4 .9918 9920 9922 9925 .9927 .9929 .9931 9932 9934 .9936 2.5 .9938 9940 9941 9943 9945 .9946 .9948 .9949 • .9951 9952 2.6 9953 9955 .9956 9957 9959 .9960 .9961 9962 .9963 9964 Assume that human body temperatures are normally distributed with a mean of 98.22°F and a standard deviation of 0.62°F. a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate? b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0 % of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the subject is not really sick.) Click to view page 1 of the table. Click to view page 2 of the table. a. The percentage of normal and healthy persons considered to have a fever is 0.01 %. (Round to two decimal places as needed.) Does this percentage suggest that a cutoff of 100.6°F is appropriate? OA. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever. B. No, because there is a large probability that a normal and healthy person would be considered to have a fever. c. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever. OD. No, because there is a small probability that a normal and healthy person would be considered to have a fever. b. The minimum temperature for requiring further medical tests should be (Round to two decimal places as needed.) Standard Normal Table (Page 1) NEGATIVE z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 02 03 .04 06 07 08 09 -3.50 F if we want only 5.0% of healthy people to exceed it. and lower 0001 -34 0003 0003 0003 0003 0003 0003 0003 .0003 0003 -3.3 0005 0005 0005 0004 0004 .0004 .0004 .0004 .0004 0003 -32 0007 0007 0006 0006 0006 0006 0006 0005 0005 0005 0010 0009 0009 0009 0008 0008 0008 .0008 .0007 0007 -3.0 0013 0013 0013 0012 0012 .com .com .0011 0010 0010 -2.9 0019 0018 0018 0017 0016 0016 0015 0015 0014 0014 -2.8 0026 0025 0024 0023 0023 0022 0021 .0021 .0020 0019 -27 0035 0034 .0033 0032 0031 .0030 0029 .0028 0027 0026 -26 .0047 0045 0044 0043 0041 0040 0039 0038 0037 0036 -25 0062 0060 0059 0057 0055 0054 0052 0051 0049 0048 -24 0082 .0080 0078 0075 0.0073 .0071 0069 .0068 A0066 0064 -23 0107 0104 0102 0099 0096 .0094 .0089 .0087 -22 0139 0136 0132 0129 0125 0119 0113 ono -21 0179 0174 0170 0166 0162 0158 0154 0150 0146 0143 -20 0228 0222 0217 0212 0207 0202 0197 0192 0188 0183 0287 0281 0274 0268 0262 0256 0250 0244 0239 0233 -1.8 0359 0351 0344 0336 0329 .0322 0314 .0307 0294 -17 0446 0436 0427 0418 0409 0401 .0392 0384 0367 -1.6 0548 0537 0526 0505 -.0495 0485 0475 0465 0455 -1.5 0668 0655 0643 0630 0618 0606 0594 0582 .0571 0559 <-14 0808 0793 0778 0764 0749 0735 0721 0708 0694 0681 -13 0968 0951 0934 0918 0901 0885 0869 0853 0838 0823 -12 1151 1131 1112 1093 3075 1056 3038 1020 3003 0985 -11 1357 1335 1314 1292 1271 1251 1230 1210 1190 1170 -10 1587 1562 1539 1515 3492 3469 3446 3423 3401 1379 3841 1814 1788 1762 1736 1711 3685 1660 1635 1611 2119 2090 2061 2033 2005 1977 1949 1922 1894 1867 -0.7 2420 2389 2358 2327 2296 2266 2236 2206 2177 2148 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 -0.5 3085 3050 3015 2981 2912 2877 2843 2810 2776 -0.4 3446 3409 3372 3336 3300 3264 3228 3192 3156 3121 ×

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
Standard Normal Table (Page 2)
n
POSITIVE z Scores
0
2
Standard Normal (z) Distribution: Cumulative Area from the LEFT
Z
.00
.01
02
.03
.04
.05
.06
.07
.08
.09
0.0
5000
5040
5080
5120
5160
.5199
.5239
5279
5319
5359
0.1
.5398
.5438
.5478
.5517
.5557
.5596
.5636
.5675
5714
5753
0.2
5793
5832
5871
5910
.5948
5987
.6026
6064
6103
.6141
0.3
6179
.6217
.6255
.6293
.6331
.6368
.6406
.6443
6480
.6517
0.4
.6554
6591
.6628
.6664
6700
6736
.6772
.6808
6844
.6879
0.5
.6915
6950
6985
.7019
.7054
7088
.7123
7157
.7190
.7224
0.6
.7257
.7291
.7324
7357
.7389
7422
.7454
.7486
.7517
.7549
0.7
.7580
.7611
.7642
.7673
7704
.7734
.7764
.7794
.7823
.7852
0.8
.7881
7910
7939
7967
7995
8023
.8051
8078
.8106
8133
0.9
8159
.8186
.8212
8238
.8264
.8289
.8315
.8340
.8365
.8389
1.0
8413
.8438
8461
.8485
.8508
.8531
.8554
.8577
.8599
.8621
1.1
.8643
.8665
8686
.8708
.8729
.8749
.8770
.8790
.8810
.8830
1.2
.8849
8869
8888
8907
.8925
8944
.8962
.8980
.8997
.9015
1.3
9032
.9049
.9066
.9082
.9099
.9115
.9131
.9147
.9162
.9177
1.4
.9192
9207
9222
.9236
9251
9265
.9279
.9292
.9306
.9319
1.5
9332
9345
9357
.9370
.9382
.9394
.9406
.9418
.9429
9441
1.6
.9452
9463
9474
.9484
9495
.9505
.9515
9525
.9535
.9545
1.7
.9554
.9564
.9573
9582
9591
.9599
.9608
.9616
.9625
.9633
1.8
.9641
.9649
.9656
.9664
.9671
.9678
.9686
9693
9699
.9706
1.9
9713
.9719
.9726
9732
.9738
.9744
.9750
.9756
9761
.9767
2.0
.9772
.9778
.9783
9788
9793
.9798
.9803
..9808
9812
.9817
2.1
.9821
.9826
9830
9834
.9838
.9842
.9846
.9850
.9854
.9857
2.2
9861
.9864
9868
9871
.9875
.9878
.9881
.9884
.9887
.9890
2.3
.9893
.9896
.9898
.9901
.9904
.9906
.9909
.9911
.9913
.9916
2.4
.9918
9920
9922
9925
.9927
.9929
.9931
9932
9934
.9936
2.5
.9938
9940
9941
9943
9945
.9946
.9948
.9949
• .9951
9952
2.6
9953
9955
.9956
9957
9959
.9960
.9961
9962
.9963
9964
Transcribed Image Text:Standard Normal Table (Page 2) n POSITIVE z Scores 0 2 Standard Normal (z) Distribution: Cumulative Area from the LEFT Z .00 .01 02 .03 .04 .05 .06 .07 .08 .09 0.0 5000 5040 5080 5120 5160 .5199 .5239 5279 5319 5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 5714 5753 0.2 5793 5832 5871 5910 .5948 5987 .6026 6064 6103 .6141 0.3 6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 6480 .6517 0.4 .6554 6591 .6628 .6664 6700 6736 .6772 .6808 6844 .6879 0.5 .6915 6950 6985 .7019 .7054 7088 .7123 7157 .7190 .7224 0.6 .7257 .7291 .7324 7357 .7389 7422 .7454 .7486 .7517 .7549 0.7 .7580 .7611 .7642 .7673 7704 .7734 .7764 .7794 .7823 .7852 0.8 .7881 7910 7939 7967 7995 8023 .8051 8078 .8106 8133 0.9 8159 .8186 .8212 8238 .8264 .8289 .8315 .8340 .8365 .8389 1.0 8413 .8438 8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 .8665 8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 1.2 .8849 8869 8888 8907 .8925 8944 .8962 .8980 .8997 .9015 1.3 9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.4 .9192 9207 9222 .9236 9251 9265 .9279 .9292 .9306 .9319 1.5 9332 9345 9357 .9370 .9382 .9394 .9406 .9418 .9429 9441 1.6 .9452 9463 9474 .9484 9495 .9505 .9515 9525 .9535 .9545 1.7 .9554 .9564 .9573 9582 9591 .9599 .9608 .9616 .9625 .9633 1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 9693 9699 .9706 1.9 9713 .9719 .9726 9732 .9738 .9744 .9750 .9756 9761 .9767 2.0 .9772 .9778 .9783 9788 9793 .9798 .9803 ..9808 9812 .9817 2.1 .9821 .9826 9830 9834 .9838 .9842 .9846 .9850 .9854 .9857 2.2 9861 .9864 9868 9871 .9875 .9878 .9881 .9884 .9887 .9890 2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2.4 .9918 9920 9922 9925 .9927 .9929 .9931 9932 9934 .9936 2.5 .9938 9940 9941 9943 9945 .9946 .9948 .9949 • .9951 9952 2.6 9953 9955 .9956 9957 9959 .9960 .9961 9962 .9963 9964
Assume that human body temperatures are normally distributed with a mean of 98.22°F and a standard deviation of 0.62°F.
a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate?
b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0 % of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the
subject is not really sick.)
Click to view page 1 of the table. Click to view page 2 of the table.
a. The percentage of normal and healthy persons considered to have a fever is 0.01 %.
(Round to two decimal places as needed.)
Does this percentage suggest that a cutoff of 100.6°F is appropriate?
OA. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever.
B. No, because there is a large probability that a normal and healthy person would be considered to have a fever.
c. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever.
OD. No, because there is a small probability that a normal and healthy person would be considered to have a fever.
b. The minimum temperature for requiring further medical tests should be
(Round to two decimal places as needed.)
Standard Normal Table (Page 1)
NEGATIVE z Scores
Standard Normal (2) Distribution: Cumulative Area from the LEFT
.00
.01
02
03
.04
06
07
08
09
-3.50
F if we want only 5.0% of healthy people to exceed it.
and
lower
0001
-34
0003
0003
0003
0003
0003
0003
0003
.0003
0003
-3.3
0005
0005
0005
0004
0004
.0004
.0004
.0004
.0004
0003
-32
0007
0007
0006
0006
0006
0006
0006
0005
0005
0005
0010
0009
0009
0009
0008
0008
0008
.0008
.0007
0007
-3.0
0013
0013
0013
0012
0012
.com
.com
.0011
0010
0010
-2.9
0019
0018
0018
0017
0016
0016
0015
0015
0014
0014
-2.8
0026
0025
0024
0023
0023
0022
0021
.0021
.0020
0019
-27
0035
0034
.0033
0032
0031
.0030
0029
.0028
0027
0026
-26
.0047
0045
0044
0043
0041
0040
0039
0038
0037
0036
-25
0062
0060
0059
0057
0055
0054
0052
0051
0049
0048
-24
0082
.0080
0078
0075
0.0073 .0071
0069
.0068
A0066
0064
-23
0107
0104
0102
0099
0096
.0094
.0089
.0087
-22
0139
0136
0132
0129
0125
0119
0113
ono
-21
0179
0174
0170
0166
0162
0158
0154
0150
0146
0143
-20
0228
0222
0217
0212
0207
0202
0197
0192
0188
0183
0287
0281
0274
0268
0262
0256
0250
0244
0239
0233
-1.8
0359
0351
0344
0336
0329
.0322
0314
.0307
0294
-17
0446
0436
0427
0418
0409
0401
.0392
0384
0367
-1.6
0548
0537
0526
0505
-.0495
0485
0475
0465
0455
-1.5
0668
0655
0643
0630
0618
0606
0594
0582
.0571
0559
<-14
0808
0793
0778
0764
0749
0735
0721
0708
0694
0681
-13
0968
0951
0934
0918
0901
0885
0869
0853
0838
0823
-12
1151
1131
1112
1093
3075
1056
3038
1020
3003
0985
-11
1357
1335
1314
1292
1271
1251
1230
1210
1190
1170
-10
1587
1562
1539
1515
3492
3469
3446
3423
3401
1379
3841
1814
1788
1762
1736
1711
3685
1660
1635
1611
2119
2090
2061
2033
2005
1977
1949
1922
1894
1867
-0.7
2420
2389
2358
2327
2296
2266
2236
2206
2177
2148
-0.6
2743
2709
2676
2643
2611
2578
2546
2514
2483
2451
-0.5
3085
3050
3015
2981
2912
2877
2843
2810
2776
-0.4
3446
3409
3372
3336
3300
3264
3228
3192
3156
3121
×
Transcribed Image Text:Assume that human body temperatures are normally distributed with a mean of 98.22°F and a standard deviation of 0.62°F. a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate? b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0 % of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the subject is not really sick.) Click to view page 1 of the table. Click to view page 2 of the table. a. The percentage of normal and healthy persons considered to have a fever is 0.01 %. (Round to two decimal places as needed.) Does this percentage suggest that a cutoff of 100.6°F is appropriate? OA. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever. B. No, because there is a large probability that a normal and healthy person would be considered to have a fever. c. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever. OD. No, because there is a small probability that a normal and healthy person would be considered to have a fever. b. The minimum temperature for requiring further medical tests should be (Round to two decimal places as needed.) Standard Normal Table (Page 1) NEGATIVE z Scores Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 02 03 .04 06 07 08 09 -3.50 F if we want only 5.0% of healthy people to exceed it. and lower 0001 -34 0003 0003 0003 0003 0003 0003 0003 .0003 0003 -3.3 0005 0005 0005 0004 0004 .0004 .0004 .0004 .0004 0003 -32 0007 0007 0006 0006 0006 0006 0006 0005 0005 0005 0010 0009 0009 0009 0008 0008 0008 .0008 .0007 0007 -3.0 0013 0013 0013 0012 0012 .com .com .0011 0010 0010 -2.9 0019 0018 0018 0017 0016 0016 0015 0015 0014 0014 -2.8 0026 0025 0024 0023 0023 0022 0021 .0021 .0020 0019 -27 0035 0034 .0033 0032 0031 .0030 0029 .0028 0027 0026 -26 .0047 0045 0044 0043 0041 0040 0039 0038 0037 0036 -25 0062 0060 0059 0057 0055 0054 0052 0051 0049 0048 -24 0082 .0080 0078 0075 0.0073 .0071 0069 .0068 A0066 0064 -23 0107 0104 0102 0099 0096 .0094 .0089 .0087 -22 0139 0136 0132 0129 0125 0119 0113 ono -21 0179 0174 0170 0166 0162 0158 0154 0150 0146 0143 -20 0228 0222 0217 0212 0207 0202 0197 0192 0188 0183 0287 0281 0274 0268 0262 0256 0250 0244 0239 0233 -1.8 0359 0351 0344 0336 0329 .0322 0314 .0307 0294 -17 0446 0436 0427 0418 0409 0401 .0392 0384 0367 -1.6 0548 0537 0526 0505 -.0495 0485 0475 0465 0455 -1.5 0668 0655 0643 0630 0618 0606 0594 0582 .0571 0559 <-14 0808 0793 0778 0764 0749 0735 0721 0708 0694 0681 -13 0968 0951 0934 0918 0901 0885 0869 0853 0838 0823 -12 1151 1131 1112 1093 3075 1056 3038 1020 3003 0985 -11 1357 1335 1314 1292 1271 1251 1230 1210 1190 1170 -10 1587 1562 1539 1515 3492 3469 3446 3423 3401 1379 3841 1814 1788 1762 1736 1711 3685 1660 1635 1611 2119 2090 2061 2033 2005 1977 1949 1922 1894 1867 -0.7 2420 2389 2358 2327 2296 2266 2236 2206 2177 2148 -0.6 2743 2709 2676 2643 2611 2578 2546 2514 2483 2451 -0.5 3085 3050 3015 2981 2912 2877 2843 2810 2776 -0.4 3446 3409 3372 3336 3300 3264 3228 3192 3156 3121 ×
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman