Assume that human body temperatures are normally distributed with a mean of 98.21 °F and a standard deviation of 0.61°F. a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate? b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0% of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the subject is not really sick.) Click to view page 1 of the table. Click to view page 2 of the table. a. The percentage of normal and healthy persons considered to have a fever is 0.01 %. (Round to two decimal places as needed.) Does this percentage suggest that a cutoff of 100.6°F is appropriate? A. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever. B. No, because there is a small probability that a normal and healthy person would be considered to have a fever. C. No, because there is a large probability that a normal and healthy person would be considered to have a fever. D. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever. Standard Normal Table (Page 1) NEGATIVE z Scores ° Standard Normal (z) Distribution: Cumulative Area from the LEFT .04 .05 .06 .07 .00 01 02 09 -3.50 and lower 0001 -3.4 .0003 .0003 0003 0003 0003 0003 0003 .0003 0003 0002 .0005 0005 0005 .0004 0004 .0004 0004 .0004 0004 0003 -3.2 .0007 0007 0006 .0006 0006 0006 0006 0005 0005 0005 -31 .0010 0009 0009 0009 0008 0008 0008 0007 -3.0 0013 0013 0013 0.0012 .com .com .com 0010 0010 0019 0018 0018 0017 0016 0016 .0015 0015 0014 .0014 -2.8 .0026 0025 0024 0023 0023 0022 .0021 0021 0020 0019 -2.7 .0035 0034 0033 .0032 0031 0030 0029 .0028 0027 0026 -2.6 .0047 0045 0044 0043 0041 0040 0039 0038 .0037 0036 .0062 .0060 0059 0057 0055 .0054 .0052 .0051 0049 0048 -2.4 .0082 .0080 0078 .0075 0073 .0071 0069 0068 A .0066 .0064 -23 0107 0104 0102 .0099 0096 .0094 0091 0089 0087 0084 -22 0139 0136 0132 0129 0122 019 0116 on3 0110 -21 0179 0174 0170 0162 0158 0154 0150 0146 0143 0228 0222 0217 0212 0207 .0202 0197 0192 0188 0183 -1.9 .0287 0281 0274 0268 0262 .0256 0250 .0244 0239 -18 0359 0351 .0344 .0336 0329 .0322 0314 0307 0301 -17 0446 0427 0418 0409 0392 0384 0375 0367 -16 0548 0537 0526 0516 0505 . .0495 0485 0475 .0465 0455 -1.5 .0668 0655 0643 .0630 0618 A.0606 0594 0582 0571 0559 -1.4 0808 0793 0778 0764 0749 0735 0721 0694 -1.3 0968 0951 0934 0918 0885 0869 0838 0823 -12 1131 1112 1093 3075 1056 3038 1020 3003 0985 -11 1314 1292 1271 1251 1230 1210 1190 170 Standard Normal Table (Page 2) n POSITIVE z Scores Standard Normal (z) Distribution: Cumulative Area from the LEFT .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 5000 5040 5080 5120 5160 5199 .5239 5279 .5319 5359 0.1 .5398 .5438 5478 5517 .5557 5596 .5636 .5675 .5714 .5753 0.2 .5793 .5832 5871 5910 5948 .5987 .6026 6064 .6103 6141 0.3 6179 6217 6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 6554 6591 6628 6664 .6700 6736 .6772 .6808 6844 .6879 0.5 6915 6950 6985 7019 .7054 .7088 .7123 7157 .7190 .7224 0.6 .7257 7291 7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 0.8 .7881 7910 7939 7967 .7995 .8023 .8051 .8078 .8106 .8133 0.9 8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 1.0 8413 .8438 8461 .8485 8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 .8665 8686 .8708 .8729 .8749 .8770 .8790 8810 .8830 1.2 8849 8869 8888 8907 .8925 .8944 .8962 .8980 .8997 .9015 1.3 .9032 .9049 .9066 .9082 .9099 9115 .9131 .9147 .9162 .9177 1.4 9192 9207 9222 .9236 .9251 .9265 .9279 9292 .9306 .9319

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Assume that human body temperatures are normally distributed with a mean of 98.21 °F and a standard deviation of 0.61°F.
a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate?
b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0% of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the
subject is not really sick.)
Click to view page 1 of the table. Click to view page 2 of the table.
a. The percentage of normal and healthy persons considered to have a fever is 0.01 %.
(Round to two decimal places as needed.)
Does this percentage suggest that a cutoff of 100.6°F is appropriate?
A. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever.
B. No, because there is a small probability that a normal and healthy person would be considered to have a fever.
C. No, because there is a large probability that a normal and healthy person would be considered to have a fever.
D. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever.
Standard Normal Table (Page 1)
NEGATIVE z Scores
°
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.04
.05
.06
.07
.00
01
02
09
-3.50
and
lower
0001
-3.4
.0003
.0003
0003
0003
0003
0003
0003
.0003
0003
0002
.0005
0005
0005
.0004
0004
.0004
0004
.0004
0004
0003
-3.2
.0007
0007
0006
.0006
0006
0006
0006
0005
0005
0005
-31
.0010
0009
0009
0009
0008
0008
0008
0007
-3.0
0013
0013
0013
0.0012
.com
.com
.com
0010
0010
0019
0018
0018
0017
0016
0016
.0015
0015
0014
.0014
-2.8
.0026
0025
0024
0023
0023
0022
.0021
0021
0020
0019
-2.7
.0035
0034
0033
.0032
0031
0030
0029
.0028
0027
0026
-2.6
.0047
0045
0044
0043
0041
0040
0039
0038
.0037
0036
.0062
.0060
0059
0057
0055
.0054
.0052
.0051
0049
0048
-2.4
.0082
.0080
0078
.0075
0073
.0071
0069
0068
A .0066
.0064
-23
0107
0104
0102
.0099
0096
.0094
0091
0089
0087
0084
-22
0139
0136
0132
0129
0122
019
0116
on3
0110
-21
0179
0174
0170
0162
0158
0154
0150
0146
0143
0228
0222
0217
0212
0207
.0202
0197
0192
0188
0183
-1.9
.0287
0281
0274
0268
0262
.0256
0250
.0244
0239
-18
0359
0351
.0344
.0336
0329
.0322
0314
0307
0301
-17
0446
0427
0418
0409
0392
0384
0375
0367
-16
0548
0537
0526
0516
0505 . .0495
0485
0475
.0465
0455
-1.5
.0668
0655
0643 .0630
0618
A.0606
0594
0582
0571
0559
-1.4
0808
0793
0778
0764
0749
0735
0721
0694
-1.3
0968
0951
0934
0918
0885
0869
0838
0823
-12
1131
1112
1093
3075
1056
3038
1020
3003
0985
-11
1314
1292
1271
1251
1230
1210
1190
170
Transcribed Image Text:Assume that human body temperatures are normally distributed with a mean of 98.21 °F and a standard deviation of 0.61°F. a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of 100.6°F is appropriate? b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5.0% of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the subject is not really sick.) Click to view page 1 of the table. Click to view page 2 of the table. a. The percentage of normal and healthy persons considered to have a fever is 0.01 %. (Round to two decimal places as needed.) Does this percentage suggest that a cutoff of 100.6°F is appropriate? A. Yes, because there is a small probability that a normal and healthy person would be considered to have a fever. B. No, because there is a small probability that a normal and healthy person would be considered to have a fever. C. No, because there is a large probability that a normal and healthy person would be considered to have a fever. D. Yes, because there is a large probability that a normal and healthy person would be considered to have a fever. Standard Normal Table (Page 1) NEGATIVE z Scores ° Standard Normal (z) Distribution: Cumulative Area from the LEFT .04 .05 .06 .07 .00 01 02 09 -3.50 and lower 0001 -3.4 .0003 .0003 0003 0003 0003 0003 0003 .0003 0003 0002 .0005 0005 0005 .0004 0004 .0004 0004 .0004 0004 0003 -3.2 .0007 0007 0006 .0006 0006 0006 0006 0005 0005 0005 -31 .0010 0009 0009 0009 0008 0008 0008 0007 -3.0 0013 0013 0013 0.0012 .com .com .com 0010 0010 0019 0018 0018 0017 0016 0016 .0015 0015 0014 .0014 -2.8 .0026 0025 0024 0023 0023 0022 .0021 0021 0020 0019 -2.7 .0035 0034 0033 .0032 0031 0030 0029 .0028 0027 0026 -2.6 .0047 0045 0044 0043 0041 0040 0039 0038 .0037 0036 .0062 .0060 0059 0057 0055 .0054 .0052 .0051 0049 0048 -2.4 .0082 .0080 0078 .0075 0073 .0071 0069 0068 A .0066 .0064 -23 0107 0104 0102 .0099 0096 .0094 0091 0089 0087 0084 -22 0139 0136 0132 0129 0122 019 0116 on3 0110 -21 0179 0174 0170 0162 0158 0154 0150 0146 0143 0228 0222 0217 0212 0207 .0202 0197 0192 0188 0183 -1.9 .0287 0281 0274 0268 0262 .0256 0250 .0244 0239 -18 0359 0351 .0344 .0336 0329 .0322 0314 0307 0301 -17 0446 0427 0418 0409 0392 0384 0375 0367 -16 0548 0537 0526 0516 0505 . .0495 0485 0475 .0465 0455 -1.5 .0668 0655 0643 .0630 0618 A.0606 0594 0582 0571 0559 -1.4 0808 0793 0778 0764 0749 0735 0721 0694 -1.3 0968 0951 0934 0918 0885 0869 0838 0823 -12 1131 1112 1093 3075 1056 3038 1020 3003 0985 -11 1314 1292 1271 1251 1230 1210 1190 170
Standard Normal Table (Page 2)
n
POSITIVE z Scores
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
0.0
5000
5040
5080
5120
5160
5199
.5239
5279
.5319
5359
0.1
.5398
.5438
5478
5517
.5557
5596
.5636
.5675
.5714
.5753
0.2
.5793
.5832
5871
5910
5948
.5987
.6026
6064
.6103
6141
0.3
6179
6217
6255
.6293
.6331
.6368
.6406
.6443
.6480
.6517
0.4
6554
6591
6628
6664
.6700
6736
.6772
.6808
6844
.6879
0.5
6915
6950
6985
7019
.7054
.7088
.7123
7157
.7190
.7224
0.6
.7257
7291
7324
.7357
.7389
.7422
.7454
.7486
.7517
.7549
0.7
.7580
.7611
.7642
.7673
.7704
.7734
.7764
.7794
.7823
.7852
0.8
.7881
7910
7939
7967
.7995
.8023
.8051
.8078
.8106
.8133
0.9
8159
.8186
.8212
.8238
.8264
.8289
.8315
.8340
.8365
.8389
1.0
8413
.8438
8461
.8485
8508
.8531
.8554
.8577
.8599
.8621
1.1
.8643
.8665
8686
.8708
.8729
.8749
.8770
.8790
8810
.8830
1.2
8849
8869
8888
8907
.8925
.8944
.8962
.8980
.8997
.9015
1.3
.9032
.9049
.9066
.9082
.9099
9115
.9131
.9147
.9162
.9177
1.4
9192
9207
9222
.9236
.9251
.9265
.9279
9292
.9306
.9319
Transcribed Image Text:Standard Normal Table (Page 2) n POSITIVE z Scores Standard Normal (z) Distribution: Cumulative Area from the LEFT .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 5000 5040 5080 5120 5160 5199 .5239 5279 .5319 5359 0.1 .5398 .5438 5478 5517 .5557 5596 .5636 .5675 .5714 .5753 0.2 .5793 .5832 5871 5910 5948 .5987 .6026 6064 .6103 6141 0.3 6179 6217 6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 6554 6591 6628 6664 .6700 6736 .6772 .6808 6844 .6879 0.5 6915 6950 6985 7019 .7054 .7088 .7123 7157 .7190 .7224 0.6 .7257 7291 7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 0.8 .7881 7910 7939 7967 .7995 .8023 .8051 .8078 .8106 .8133 0.9 8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 1.0 8413 .8438 8461 .8485 8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 .8665 8686 .8708 .8729 .8749 .8770 .8790 8810 .8830 1.2 8849 8869 8888 8907 .8925 .8944 .8962 .8980 .8997 .9015 1.3 .9032 .9049 .9066 .9082 .9099 9115 .9131 .9147 .9162 .9177 1.4 9192 9207 9222 .9236 .9251 .9265 .9279 9292 .9306 .9319
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman