An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 130 Ib and 171 lb. The new population of pilots has normally distributed weights with a mean of 140 lb and a standard deviation of 27.4 lb. Click here to view page 1 of the standard normal distribution. Click here to view page 2 of the standard normal distribution. a. If a pilot is randomly selected, find the probability that his weight is between 130 lb and 171 lb. The probability is approximately (Round to four decimal places as needed.) b. If 36 different pilots are randomly selected, find the probability that their mean weight is between 130 lb and 171 lb. The probability is approximately (Round to four decimal places as needed.) c. When redesigning the ejection seat, which probability is more relevant? O A. Part (a) because the seat performance for a sample of pilots is more important. O B. Part (a) because the seat performance for a single pilot is more important. OC. Part (b) because the seat performance for a sample of pilots is more important. O D. Part (b) because the seat performance for a single pilot is more important.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 130 Ib and 171 lb. The new population of pilots
has normally distributed weights with a mean of 140 lb and a standard deviation of 27.4 lb.
Click here to view page 1 of the standard normal distribution.
Click here to view page 2 of the standard normal distribution.
a. If a pilot is randomly selected, find the probability that his weight is between 130 lb and 171 Ib.
The probability is approximately (Round to four decimal places as needed.)
b. If 36 different pilots are randomly selected, find the probability that their mean weight is between 130 Ib and 171 lb.
The probability is approximately (Round to four decimal places as needed.)
c. When redesigning the ejection seat, which probability is more relevant?
O A. Part (a) because the seat performance for a sample of pilots is more important.
O B. Part (a) because the seat performance for a single pilot is more important.
OC. Part (b) because the seat performance for a sample of pilots is more important.
O D. Part (b) because the seat performance for a single pilot is more important.
Transcribed Image Text:An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 130 Ib and 171 lb. The new population of pilots has normally distributed weights with a mean of 140 lb and a standard deviation of 27.4 lb. Click here to view page 1 of the standard normal distribution. Click here to view page 2 of the standard normal distribution. a. If a pilot is randomly selected, find the probability that his weight is between 130 lb and 171 Ib. The probability is approximately (Round to four decimal places as needed.) b. If 36 different pilots are randomly selected, find the probability that their mean weight is between 130 Ib and 171 lb. The probability is approximately (Round to four decimal places as needed.) c. When redesigning the ejection seat, which probability is more relevant? O A. Part (a) because the seat performance for a sample of pilots is more important. O B. Part (a) because the seat performance for a single pilot is more important. OC. Part (b) because the seat performance for a sample of pilots is more important. O D. Part (b) because the seat performance for a single pilot is more important.
Standard Normal (z) Distribution: Cumulative Area from the LEFT
Standard Normal (2) Distribution: Cumulative Area from the LEFT
.00
.01
.02 .03
04
.05
.06
.07
.08
09
00
.01
02
0 04
05
06
07
.09
0.0
5000
5040
5080
5120
5160
5199
5239
5279
.5319
5359
-3.50
and
lower
0.1
5398
5438
5478
.5517
.5557
.5596
5636
5675
.5714
.5753
0001
0.2
5793
5832
5871
5910
.5948
5987
.6026
.6064
.6103
.6141
-14
0003
.0003
.0003
0003
.0003
0003
.0003
0003
0003
0002
0.3
6179
6217
6255
.6293
.6331
6368
6406
.6443
.6480
6517
-13
0005
.0005
.0005
0004
.0004
0004
.0004
0004
0004
0003
0.4
6554
6591
6628
.6664
.6700
.6736
.6772
.6808
.6844
.6879
-32
0007
.0007
.0006
0006
.0006
0006
.0006
0005
0005
.0006
0.5
6915
6950
.6985
7019
.7054
7088
.7123
7157
.7190
7224
-1.1
0010
.0009
.0009
0009
.0008
0008
.0008
0008
D007
.0007
-3.0
0013
.0013
.0013
0012
.0012
0011
0.6
7257
7291
7324
7357
7389
7422
.7454
.7486
.7517
7549
0011
.0011
0010
.0010
-29
0019
.0018
.0018
0017
.0016
0016
.0015
0015
0014
0014
0.7
7580
7611
7642
7673
7704
7734
7764
7794
.7823
7852
-2.8
0026
.0025
.0024
0023
.0023
.0022
.0021
0021
0020
.0019
0.8
.7881
7910
7939
7967
7995
8023
B051
8078
8106
8133
-2.7
0036
.0034
.0033
.0032
.0001
0030
.0029
0028
0027
0026
0.9
.8159
8186
8212
.8238
8264
8289
B315
8340
8365
8389
-2.6
0047
.0045
.0044
.0043
.0041
0040
.0039
0038
0037
.0036
1.0
.8413
8438
8461
8485
8508
.8531
B564
8577
8599
8621
-25
0062
.0060
.0069
0057
.0065
0064
.0052
0051
0049
.0048
1.1
8643
8665
8686
8708
8729
8749
8770
8790
8810
8830
.0089
-24
-2.3
0082
.0080
.0078
0075
.0073
0071
.0064
1.2
8849
8869
8888
8907
8925
8944
8962
8980
8997
9015
0107
.0104
.0102
0099
.0096
0094
.0091
0089
0087
.0084
1.3
9032
9049
9066
9082
9099
9115
9131
9147
.9162
9177
-22
0139
.0136
.0132
.0129
.0125
0122
.0119
0116
0113
0110
1.4
9192
9207
9222
9236
9251
9265
9279
9292
9306
9319
-2.1
0179
.0174
.0170
0166
.0162
0158
.0154
0150
0146
.0143
1.5
9332
.9345
.9357
9370
9382
9394
9406
9418
9429
9441
-2.0
0228
.0222
.0217
.0212
.0207
.0202
.0197
0192
0188
0183
1.6
9452
9463
.9474
9484
9495
9505
9515
9525
9535
9545
-1.9
0287
.0281
.0274
.0268
.0262
0256
.0250
0244
0229
.0233
1.7
.9554
9564
.9573
9582
.9591
9599
9608
9616
.9625
9633
-1.8
0359
.0361
.0344
0336
.0329
0322
.0314
.0301
.0294
-1.7
0446
.0436
.0427
.0418
.0409
0401
.0392
0384
0375
.0367
1.8
9641
9649
.9656
9664
9671
9678
9686
9693
9699
9706
-1.6
0548
.0537
0626
0516
.0505
0496
.0485
0475
0465
0455
1.9
9713
9719
9726
9732
9738
9744
9750
9756
9761
9767
-1.5
0688
.0666
.0843
0630
.0618
0606
.0594
0682
0671
0669
2.0
.9772
.9778
.9783
9788
9793
.9798
9803
9808
9812
9817
-1.4
0808
.0793
.0778
0764
.0749
.0735
.0721
0708
O694
0681
2.1
9821
9826
9830
9834
9838
9842
9846
9850
9854
9857
-13
0968
0951
0934
.0918
.0901
0885
.0889
0853
0838
0823
2.2
9861
9864
.9868
9871
9875
9878
9881
9884
9887
9890
-12
.1151
.1131
.1112
.1093
.1075
1056
1038
1020
1003
0985
2.3
.9893
.9896
.9898
9901
9904
9906
9909
9911
9913
9916
-1.1
.1357
1336
.1314
1292
.1271
.1251
.1230
1210
.1190
.1170
2.4
9918
9920
9922
9925
9927
9929
9931
9932
9934
9936
-1.0
.1587
.1562
.1539
.1515
.1492
.1469
1446
1423
.1401
.1379
2.5
9938
9940
.9941
9943
9945
9946
9948
9949
9951
9952
-0.9
1841
.1814
.1788
.1762
.1736
.1711
.1685
.1660
.1635
.1611
2.6
9953
9955
.9956
9957
9959
9960
9961
9962
9963
9964
-0.8
2119
2090
2061
2033
2006
.1977
1949
1922
.1894
.1867
2.7
9965
9966
.9967
9968
9969
9970
9971
9972
9973
9974
-07
-0.6
2420
2389
2358
2327
.2296
2266
2236
2206
2177
.2148
2743
2709
2676
2643
.2611
2578
.2546
2514
2483
.2461
2.8
9974
.9975
.9976
9977
9977
9978
9979
9979
9980
.9981
9982
9982
9983
9988
-0.5
3086
3060
3015
2981
.2946
2912
2877
2843
2810
2776
2.9
9981
9984
9984
9985
9985
9986
9986
-04
3446
3409
.3372
3336
3300
3264
3228
3192
3156
.3121
3.0
9987
9987
9987
9988
9989
9989
9989
9990
9990
-03
3821
3703
.3745
3707
.3689
3632
3594
3567
3620
3483
3.1
9990
9991
.9991
9991
9992
9992
9992
9992
9993
9993
4207
4168
A129
A090
A052
4013
2974
2936
3897
3859
9995
9996
-02
3.2
9993
9993
9994
9994
9994
9994
9994
9995
9995
-01
4602
4662
A522
4483
A443
4404
4364
4325
A286
4247
9996
9997
3.3
9995
9995
9995
9996
9996
9996
9996
9997
-00
5000
4960
A920
4880
AB40
4801
.4761
4721
4681
4641
3.4
9997
9997
.9997
.9997
3997
9997
9997
.9997
9998
3.50
and up
00
.01
.02
02
04
05
06
07
08
09
9999
.00
.01
.02
.03
04
05
.06
.07
.08
09
Transcribed Image Text:Standard Normal (z) Distribution: Cumulative Area from the LEFT Standard Normal (2) Distribution: Cumulative Area from the LEFT .00 .01 .02 .03 04 .05 .06 .07 .08 09 00 .01 02 0 04 05 06 07 .09 0.0 5000 5040 5080 5120 5160 5199 5239 5279 .5319 5359 -3.50 and lower 0.1 5398 5438 5478 .5517 .5557 .5596 5636 5675 .5714 .5753 0001 0.2 5793 5832 5871 5910 .5948 5987 .6026 .6064 .6103 .6141 -14 0003 .0003 .0003 0003 .0003 0003 .0003 0003 0003 0002 0.3 6179 6217 6255 .6293 .6331 6368 6406 .6443 .6480 6517 -13 0005 .0005 .0005 0004 .0004 0004 .0004 0004 0004 0003 0.4 6554 6591 6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 -32 0007 .0007 .0006 0006 .0006 0006 .0006 0005 0005 .0006 0.5 6915 6950 .6985 7019 .7054 7088 .7123 7157 .7190 7224 -1.1 0010 .0009 .0009 0009 .0008 0008 .0008 0008 D007 .0007 -3.0 0013 .0013 .0013 0012 .0012 0011 0.6 7257 7291 7324 7357 7389 7422 .7454 .7486 .7517 7549 0011 .0011 0010 .0010 -29 0019 .0018 .0018 0017 .0016 0016 .0015 0015 0014 0014 0.7 7580 7611 7642 7673 7704 7734 7764 7794 .7823 7852 -2.8 0026 .0025 .0024 0023 .0023 .0022 .0021 0021 0020 .0019 0.8 .7881 7910 7939 7967 7995 8023 B051 8078 8106 8133 -2.7 0036 .0034 .0033 .0032 .0001 0030 .0029 0028 0027 0026 0.9 .8159 8186 8212 .8238 8264 8289 B315 8340 8365 8389 -2.6 0047 .0045 .0044 .0043 .0041 0040 .0039 0038 0037 .0036 1.0 .8413 8438 8461 8485 8508 .8531 B564 8577 8599 8621 -25 0062 .0060 .0069 0057 .0065 0064 .0052 0051 0049 .0048 1.1 8643 8665 8686 8708 8729 8749 8770 8790 8810 8830 .0089 -24 -2.3 0082 .0080 .0078 0075 .0073 0071 .0064 1.2 8849 8869 8888 8907 8925 8944 8962 8980 8997 9015 0107 .0104 .0102 0099 .0096 0094 .0091 0089 0087 .0084 1.3 9032 9049 9066 9082 9099 9115 9131 9147 .9162 9177 -22 0139 .0136 .0132 .0129 .0125 0122 .0119 0116 0113 0110 1.4 9192 9207 9222 9236 9251 9265 9279 9292 9306 9319 -2.1 0179 .0174 .0170 0166 .0162 0158 .0154 0150 0146 .0143 1.5 9332 .9345 .9357 9370 9382 9394 9406 9418 9429 9441 -2.0 0228 .0222 .0217 .0212 .0207 .0202 .0197 0192 0188 0183 1.6 9452 9463 .9474 9484 9495 9505 9515 9525 9535 9545 -1.9 0287 .0281 .0274 .0268 .0262 0256 .0250 0244 0229 .0233 1.7 .9554 9564 .9573 9582 .9591 9599 9608 9616 .9625 9633 -1.8 0359 .0361 .0344 0336 .0329 0322 .0314 .0301 .0294 -1.7 0446 .0436 .0427 .0418 .0409 0401 .0392 0384 0375 .0367 1.8 9641 9649 .9656 9664 9671 9678 9686 9693 9699 9706 -1.6 0548 .0537 0626 0516 .0505 0496 .0485 0475 0465 0455 1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767 -1.5 0688 .0666 .0843 0630 .0618 0606 .0594 0682 0671 0669 2.0 .9772 .9778 .9783 9788 9793 .9798 9803 9808 9812 9817 -1.4 0808 .0793 .0778 0764 .0749 .0735 .0721 0708 O694 0681 2.1 9821 9826 9830 9834 9838 9842 9846 9850 9854 9857 -13 0968 0951 0934 .0918 .0901 0885 .0889 0853 0838 0823 2.2 9861 9864 .9868 9871 9875 9878 9881 9884 9887 9890 -12 .1151 .1131 .1112 .1093 .1075 1056 1038 1020 1003 0985 2.3 .9893 .9896 .9898 9901 9904 9906 9909 9911 9913 9916 -1.1 .1357 1336 .1314 1292 .1271 .1251 .1230 1210 .1190 .1170 2.4 9918 9920 9922 9925 9927 9929 9931 9932 9934 9936 -1.0 .1587 .1562 .1539 .1515 .1492 .1469 1446 1423 .1401 .1379 2.5 9938 9940 .9941 9943 9945 9946 9948 9949 9951 9952 -0.9 1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611 2.6 9953 9955 .9956 9957 9959 9960 9961 9962 9963 9964 -0.8 2119 2090 2061 2033 2006 .1977 1949 1922 .1894 .1867 2.7 9965 9966 .9967 9968 9969 9970 9971 9972 9973 9974 -07 -0.6 2420 2389 2358 2327 .2296 2266 2236 2206 2177 .2148 2743 2709 2676 2643 .2611 2578 .2546 2514 2483 .2461 2.8 9974 .9975 .9976 9977 9977 9978 9979 9979 9980 .9981 9982 9982 9983 9988 -0.5 3086 3060 3015 2981 .2946 2912 2877 2843 2810 2776 2.9 9981 9984 9984 9985 9985 9986 9986 -04 3446 3409 .3372 3336 3300 3264 3228 3192 3156 .3121 3.0 9987 9987 9987 9988 9989 9989 9989 9990 9990 -03 3821 3703 .3745 3707 .3689 3632 3594 3567 3620 3483 3.1 9990 9991 .9991 9991 9992 9992 9992 9992 9993 9993 4207 4168 A129 A090 A052 4013 2974 2936 3897 3859 9995 9996 -02 3.2 9993 9993 9994 9994 9994 9994 9994 9995 9995 -01 4602 4662 A522 4483 A443 4404 4364 4325 A286 4247 9996 9997 3.3 9995 9995 9995 9996 9996 9996 9996 9997 -00 5000 4960 A920 4880 AB40 4801 .4761 4721 4681 4641 3.4 9997 9997 .9997 .9997 3997 9997 9997 .9997 9998 3.50 and up 00 .01 .02 02 04 05 06 07 08 09 9999 .00 .01 .02 .03 04 05 .06 .07 .08 09
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman