A survey is planned to compare salaries of plant managers in two regions. The plan is to take a sample of 400 plant managers from each region and ask their annual salaries. Assume that previous sample statistics suggest that 0102 = $4000. Are the sample sizes sufficient to produce a 95% confidence interval on μ₁-μ₂ having a width of only $1000? Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. The sample sizes sufficient because the samples would need to be at least people each, which is the planned sample sizes of 400. t whole number as needed.) greater than less than

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
100%
A survey is planned to compare salaries of plant managers in two regions. The plan is to take a sample of 400 plant
managers from each region and ask their annual salaries. Assume that previous sample statistics suggest that
0₁ = 02 = $4000. Are the sample sizes sufficient to produce a 95% confidence interval on μ₁-μ₂ having a width of only
$1000?
Click here to view page 1 of the standard normal distribution table.
Click here to view page 2 of the standard normal distribution table.
The sample sizes
sufficient because the samples would need to be at least
people each, which is
the planned sample sizes of 400.
t whole number as needed.)
greater than
less than
Transcribed Image Text:A survey is planned to compare salaries of plant managers in two regions. The plan is to take a sample of 400 plant managers from each region and ask their annual salaries. Assume that previous sample statistics suggest that 0₁ = 02 = $4000. Are the sample sizes sufficient to produce a 95% confidence interval on μ₁-μ₂ having a width of only $1000? Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. The sample sizes sufficient because the samples would need to be at least people each, which is the planned sample sizes of 400. t whole number as needed.) greater than less than
Areas under the Normal Curve
Areas under the Normal Curve
z
.00
.01
-3.4
0.0003 0.0003 0.0003 0.0003
-3.3 0.0005 0.0005 0.0005 0.0004
-3.2 0.0007 0.0007 0.0006 0.0006
-3.1 0.0010 0.0009 0.0009 0.0009
-3.0 0.0013 0.0013 0.0013 0.0012
-2.9 0.0019 0.0018 0.0018 0.0017
-2.8 0.0026 0.0025 0.0024 0.0023
-2.7 0.0035 0.0034 0.0033 0.0032
-2.6 0.0047 0.0045 0.0044 0.0043
-2.5 0.0062 0.0060 0.0059 0.0057
-2.4 0.0082 0.0080 0.0078 0.0075
-2.3 0.0107 0.0104 0.0102 0.0099
.02
.03
.05
.04
.06
.07
0.0003 0.0003
0.0003 0.0003
0.0004 0.0004 0.0004 0.0004
0.0006 0.0006 0.0006 0.0005
0.0008 0.0008 0.0008 0.0008
0.0012 0.0011 0.0011 0.0011
0.0016 0.0016 0.0015 0.0015
0.0023 0.0022 0.0021 0.0021
0.0031 0.0030 0.0029 0.0028
.08
.09
0.0003 0.0002 -3.4
0.0004 0.0003 -3.3
0.0005 0.0005 -3.2
z
Z
.00
.01
.02
.03
.04
.05
.06
.07
0.0007 0.0007 -3.1
0.0010 0.0010 -3.0
0.3
0.4
-0.3 0.3821 0.3783 0.3745
2
.00
.01
0.0041 0.0040 0.0039 0.0038
0.0055 0.0054 0.0052 0.0051
0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4
0.0096 0.0094 0.0091 0.0089 0.0087
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 -1.9
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 -1.8
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 -1.7
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.6
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571
0.0559 -1.5
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 -1.4
-1.3
0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 -1.2
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 -1.1
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 -1.0
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 -0.9
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 -0.8
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 -0.7
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192
0.3707 0.3669 0.3632 0.3594 0.3557
0.3483 -0.3
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 -0.2
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 -0.1
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 -0.0
.02
.03
.04
.05
.06
.07
.08
.09
Z
0.0014 0.0014 -2.9
0.0020 0.0019 -2.8
0.0027 0.0026 2.7
0.0037 0.0036 -2.6
0.0049 0.0048 -2.5
0.5
0.0084 -2.3
0.0110 -2.2
0.0143 -2.1
2.7
0.2483 0.2451 -0.6
0.2810
0.2776 -0.5
0.3156
0.3520
0.3121 -0.4
¡A
2
.00
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.2
0.6179 0.6217 0.6255
0.6293 0.6331
0.6368 0.6406 0.6443 0.6480 0.6517 0.3
0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4
0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.5
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.6
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.7
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.0
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.1
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.2
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.3
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.4
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.5
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.6
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.7
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.8
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 1.9
2.0 0.9772 0.9778 0.9783 0.9788 0,9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.0
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878
0.9881 0.9884 0.9887 0.9890 2.2
2.3
0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.3
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.4
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.5
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.6
0.9965 0.9966 0.9967
0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.7
2.8
0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.8
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 2.9
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992
0.9992 0.9992 0.9993 0.9993 3.1
3.2 0.9993
0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.2
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.3
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.4
.01
.02
.03
.04
.05
.06
.07
.08
.09
.08
.09
0.5319 0.5359 0.0
2
Z
Transcribed Image Text:Areas under the Normal Curve Areas under the Normal Curve z .00 .01 -3.4 0.0003 0.0003 0.0003 0.0003 -3.3 0.0005 0.0005 0.0005 0.0004 -3.2 0.0007 0.0007 0.0006 0.0006 -3.1 0.0010 0.0009 0.0009 0.0009 -3.0 0.0013 0.0013 0.0013 0.0012 -2.9 0.0019 0.0018 0.0018 0.0017 -2.8 0.0026 0.0025 0.0024 0.0023 -2.7 0.0035 0.0034 0.0033 0.0032 -2.6 0.0047 0.0045 0.0044 0.0043 -2.5 0.0062 0.0060 0.0059 0.0057 -2.4 0.0082 0.0080 0.0078 0.0075 -2.3 0.0107 0.0104 0.0102 0.0099 .02 .03 .05 .04 .06 .07 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0006 0.0006 0.0006 0.0005 0.0008 0.0008 0.0008 0.0008 0.0012 0.0011 0.0011 0.0011 0.0016 0.0016 0.0015 0.0015 0.0023 0.0022 0.0021 0.0021 0.0031 0.0030 0.0029 0.0028 .08 .09 0.0003 0.0002 -3.4 0.0004 0.0003 -3.3 0.0005 0.0005 -3.2 z Z .00 .01 .02 .03 .04 .05 .06 .07 0.0007 0.0007 -3.1 0.0010 0.0010 -3.0 0.3 0.4 -0.3 0.3821 0.3783 0.3745 2 .00 .01 0.0041 0.0040 0.0039 0.0038 0.0055 0.0054 0.0052 0.0051 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4 0.0096 0.0094 0.0091 0.0089 0.0087 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 -2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0 -1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 -1.9 -1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 -1.8 -1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 -1.7 -1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.6 -1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5 -1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 -1.4 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3 -1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 -1.2 -1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 -1.1 -1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 -1.0 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 -0.9 -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 -0.8 -0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 -0.7 -0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 -0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3707 0.3669 0.3632 0.3594 0.3557 0.3483 -0.3 -0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 -0.2 -0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 -0.1 -0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 -0.0 .02 .03 .04 .05 .06 .07 .08 .09 Z 0.0014 0.0014 -2.9 0.0020 0.0019 -2.8 0.0027 0.0026 2.7 0.0037 0.0036 -2.6 0.0049 0.0048 -2.5 0.5 0.0084 -2.3 0.0110 -2.2 0.0143 -2.1 2.7 0.2483 0.2451 -0.6 0.2810 0.2776 -0.5 0.3156 0.3520 0.3121 -0.4 ¡A 2 .00 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.2 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.3 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.5 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.6 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.7 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.0 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.1 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.2 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.3 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.4 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.5 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.6 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.7 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.8 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 1.9 2.0 0.9772 0.9778 0.9783 0.9788 0,9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.0 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.2 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.3 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.4 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.5 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.6 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.7 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.8 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 2.9 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.1 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.2 3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.3 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.4 .01 .02 .03 .04 .05 .06 .07 .08 .09 .08 .09 0.5319 0.5359 0.0 2 Z
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 12 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON