A solution of oxalic acid dihydrate (H:C2O4-2H:O) with a known concentration of 0.400 M H:C2O4-2H20 is titrated with a 0.333 M NaOH solution. How many L NaOH are required to reach the second equivalence point with a starting volume of 65.0 mL H:C2O4-2H2O , according to the following balanced chemical equation: H:C:O4 2H:0 + 2 NaOH – Na:C:O4 + 4 H:O mol H.GO. ZH:O 65.0 mL H:C2O4-2H2O 2 mol H:C2O4 2H:0 0.156 L NAOH LH:C:04-2H:0 1 molH.GO. ZH:O 0.333 mol NaOH -O.-2H:0 65.0 mL H:C:0.-2H:0 2 mol H:C:O.-2H:0 = 0.156 L NaOH 2H:0 1 mol H:C:O.-2H:0 0.333 mol NaOH ADD FACTOR DELETE ANSWER RESET *( ) 0.400 0.156 2 0.001 156 7.81 x 10 0.156 0.0781 0.333 4 39.0 78.1 1.56 x 10 1000 0.0520 5.20 x 10° 65.0 mol H:C204-2H:O g NaOH mL NaOH MH:C2O+-2H2O g H:C2O+-2H2O mol NaOH L NaOH M NaOH L H:C:O.-2H:O mL H:C2O4-2H:0
A solution of oxalic acid dihydrate (H:C2O4-2H:O) with a known concentration of 0.400 M H:C2O4-2H20 is titrated with a 0.333 M NaOH solution. How many L NaOH are required to reach the second equivalence point with a starting volume of 65.0 mL H:C2O4-2H2O , according to the following balanced chemical equation: H:C:O4 2H:0 + 2 NaOH – Na:C:O4 + 4 H:O mol H.GO. ZH:O 65.0 mL H:C2O4-2H2O 2 mol H:C2O4 2H:0 0.156 L NAOH LH:C:04-2H:0 1 molH.GO. ZH:O 0.333 mol NaOH -O.-2H:0 65.0 mL H:C:0.-2H:0 2 mol H:C:O.-2H:0 = 0.156 L NaOH 2H:0 1 mol H:C:O.-2H:0 0.333 mol NaOH ADD FACTOR DELETE ANSWER RESET *( ) 0.400 0.156 2 0.001 156 7.81 x 10 0.156 0.0781 0.333 4 39.0 78.1 1.56 x 10 1000 0.0520 5.20 x 10° 65.0 mol H:C204-2H:O g NaOH mL NaOH MH:C2O+-2H2O g H:C2O+-2H2O mol NaOH L NaOH M NaOH L H:C:O.-2H:O mL H:C2O4-2H:0
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
I cant figure out what Im doing wrong
![**Text Transcription for Educational Website:**
---
A solution of oxalic acid dihydrate (H₂C₂O₄·2H₂O) with a known concentration of **0.400 M H₂C₂O₄·2H₂O** is titrated with a **0.333 M NaOH** solution. How many **L NaOH** are required to reach the second equivalence point with a starting volume of **65.0 mL H₂C₂O₄·2H₂O**, according to the following balanced chemical equation:
\[ \text{H₂C₂O₄·2H₂O} + 2 \text{NaOH} \rightarrow \text{Na₂C₂O₄} + 4\text{H₂O} \]
**Calculation Steps:**
1. **Convert Volume to Moles:**
\[
\frac{\text{mol H₂C₂O₄·2H₂O}}{\text{L H₂C₂O₄·2H₂O}} \times \frac{\text{mL H₂C₂O₄·2H₂O}}{1}
= \frac{65.0 \text{ mL H₂C₂O₄·2H₂O}}{1 \text{ mol H₂C₂O₄·2H₂O}}
\]
2. **Use Stoichiometry to Convert to NaOH:**
\[
\times \frac{2 \text{ mol H₂C₂O₄·2H₂O}}{0.333 \text{ mol NaOH}}
\]
3. **Calculate Final Volume:**
\[
= 0.156 \text{ L NaOH}
\]
**Diagram Explanation:**
- The top section describes the titration process and provides the balanced chemical equation.
- Below this, a step-by-step calculation is shown, converting volume to moles using molarity, then applying stoichiometry to find the volume of NaOH.
- At the bottom, there is a toolbox with various numerical and unit conversion factors, including buttons for molarity, volume, and mole conversion related to both H₂C₂O₄·2H₂O and NaOH.
This setup demonstrates the systematic approach to solving a titration problem using molarity and sto](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffade0bae-4c2d-48bb-abcb-ea0806dfa137%2Ffb88a1c0-aa97-4210-b427-917857f9099a%2Ftack52j_processed.png&w=3840&q=75)
Transcribed Image Text:**Text Transcription for Educational Website:**
---
A solution of oxalic acid dihydrate (H₂C₂O₄·2H₂O) with a known concentration of **0.400 M H₂C₂O₄·2H₂O** is titrated with a **0.333 M NaOH** solution. How many **L NaOH** are required to reach the second equivalence point with a starting volume of **65.0 mL H₂C₂O₄·2H₂O**, according to the following balanced chemical equation:
\[ \text{H₂C₂O₄·2H₂O} + 2 \text{NaOH} \rightarrow \text{Na₂C₂O₄} + 4\text{H₂O} \]
**Calculation Steps:**
1. **Convert Volume to Moles:**
\[
\frac{\text{mol H₂C₂O₄·2H₂O}}{\text{L H₂C₂O₄·2H₂O}} \times \frac{\text{mL H₂C₂O₄·2H₂O}}{1}
= \frac{65.0 \text{ mL H₂C₂O₄·2H₂O}}{1 \text{ mol H₂C₂O₄·2H₂O}}
\]
2. **Use Stoichiometry to Convert to NaOH:**
\[
\times \frac{2 \text{ mol H₂C₂O₄·2H₂O}}{0.333 \text{ mol NaOH}}
\]
3. **Calculate Final Volume:**
\[
= 0.156 \text{ L NaOH}
\]
**Diagram Explanation:**
- The top section describes the titration process and provides the balanced chemical equation.
- Below this, a step-by-step calculation is shown, converting volume to moles using molarity, then applying stoichiometry to find the volume of NaOH.
- At the bottom, there is a toolbox with various numerical and unit conversion factors, including buttons for molarity, volume, and mole conversion related to both H₂C₂O₄·2H₂O and NaOH.
This setup demonstrates the systematic approach to solving a titration problem using molarity and sto
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY