A 10% rich mixture of Heptane (C,H16) and air is initially at a pressure of 1 bar and temperature of 100°C, and is polytropically compressed through a volumetric ratio of 6 to 1. It is ignited and adiabatic combustion proceeds at constant volume. The maximum temperature reached is 2627°C and at this temperature the equilibrium constants are PH₂OPCO = 6.72 PCO₂PH₂ P²coPo₂ = 0.054 Pco2po ' = 1bar is a reference pressure for the equilibrium constants. if the constituents of the gas are CO2, CO, H₂O, H₂, O2 and N₂: (a) Calcuate the reaction equation without dissociation (b) Calculate the equilibrium product composition. (c) Verify that approximately 30.2 % of the carbon has burned incompletely. Notes: the number of moles is not conserved in this reaction! You may use any method to solve the (nonlinear) equations you derive.
A 10% rich mixture of Heptane (C,H16) and air is initially at a pressure of 1 bar and temperature of 100°C, and is polytropically compressed through a volumetric ratio of 6 to 1. It is ignited and adiabatic combustion proceeds at constant volume. The maximum temperature reached is 2627°C and at this temperature the equilibrium constants are PH₂OPCO = 6.72 PCO₂PH₂ P²coPo₂ = 0.054 Pco2po ' = 1bar is a reference pressure for the equilibrium constants. if the constituents of the gas are CO2, CO, H₂O, H₂, O2 and N₂: (a) Calcuate the reaction equation without dissociation (b) Calculate the equilibrium product composition. (c) Verify that approximately 30.2 % of the carbon has burned incompletely. Notes: the number of moles is not conserved in this reaction! You may use any method to solve the (nonlinear) equations you derive.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:A 10% rich mixture of Heptane (C,H16) and air is initially at a pressure of 1 bar and
temperature of 100°C, and is polytropically compressed through a volumetric ratio of 6 to
1. It is ignited and adiabatic combustion proceeds at constant volume. The maximum
temperature reached is 2627°C and at this temperature the equilibrium constants are
PH₂OPCO
= 6.72
PCO₂PH₂
P²coPo₂
= 0.054
Pco2po
' = 1bar is a reference pressure for the equilibrium constants. if the constituents of the
gas are CO2, CO, H₂O, H₂, O2 and N₂:
(a) Calcuate the reaction equation without dissociation
(b) Calculate the equilibrium product composition.
(c) Verify that approximately 30.2 % of the carbon has burned incompletely.
Notes:
the number of moles is not conserved in this reaction!
You may use any method to solve the (nonlinear) equations you derive.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY