Equations of state for pure fugacity EOS P=N VAN DER WAALS y2= a2ly2 Mx Fugacities from EOS: EOS RT VAN DER WAALS P = 27-2 V-b FOR VJL MIXTURES OF FLUIDS PURE ()-1 29 ===== - YRT - In (P(X)), PURE In RT n() = - y-b MIXTURE bi = X,P v-b a = {xi xj aij, b = x; bj 29 YRT -In (P(b)), 2(x,a +x1)_ YRT a12 = √11-922 921 = 912 911 = a₁ a22 = 92 RT RT a₁ = کــ = For 2: UBX END 1-2, 2-1 27 RT R 64 Pe RTC 8 Pc L 9a3MAUU (3) EOS-vdw: Mx Fugacities (EOS): Argon(1)+Ethylene(2)-- Use vdw for mixtures Hw11.124 Ar (39.94) + C2H4 (28.05) DATA T, OR P.atm m, lb 536.67 81.42 157 39.94 CALC.3 Activities: a1 & a2 Pure f0 eq: Fugacity, F10 b1/(v-b)-2(x1*a11+x2*a12)/vRT-In[P(v-b)/RT] Pure Ar Find: Pur+Mx CALC.1 Mixture v Molar volume (CALC.2 vdW Use goalseek P=RT/[v-b]-alv^2 vdw-mx Find: Fugacities in Mx Formula: In(f1/y1P)= Fugacity, F1 P= 81.419 Mx v= 4.1645 b[v-b] 2[...]/vRT 0.145798 0.512132 MW1 MW2 28.05 In[P(v-b)/RT] -0.30531 y1 0.75 In[fly1P) y2 0.25 Pure v10 MW, Av! 36.9675 Molar vol (pure1) P10 81.41936 goal-seek.pu v10= 4.4922 sum= fly1P f1= -0.06102 0.9408 57.45 atm cf. 61.065 atm y1*P nT, Ibm 4.2469737 Fugacity, f2 Pure v20 R, gas c 0.7302 cuft atm/lbmol.R P20 p571 goal-seek.pɩ v20 Molar Vol(pure2] 81.42001 1.8801 b2l(v-b) 2[...]/RT 0.259374 0.935135 In[P(v-b)/RT] -0.30531 1 a11=a1 b1 346.36941 0.5170999 sum= f2ly1P 2 a22-a2 1154.848 |f2= -0.37045 0.690422 14.054 atm cf. 20.355 atm y2*P b2 0.9199204 a12= 632.4587 bm 0.617805 In(f/P)=b/(v-b)-2a/(vRT)-In[P(v-b)/RT] bl(v-b) 0.130086 2al(vRT) 0.393519 In([P(v-b) -0.19129 sum -0.07215 F10/P F10 0.930394 75.75271 a1=f1f10 cf. 0.75 Pure C2- y1= aly1 Fugacity, f20 1.0112 bl(v-b) 0.958098 2al((vRT) 3.134952 In[P(v-b) -1.61199 sum F20P -0.56487 0.568437 f20 46.28211 a2=f2f20 cf.0.25 y2= a2ly2

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

A. Observe the picture of argon(1)-ethylene(2) mixture, find the activity of a1 (argon) by van der Waals equation and enter the value of a1 below

B. Observe the picture of argon(1)-ethylene(2) mixture, find the activity of a2 (ethylene) by van der Waals equation and enter the value of a2 below

Equations of state
for pure fugacity
EOS P=N
VAN DER WAALS
y2= a2ly2
Mx Fugacities from EOS:
EOS
RT
VAN DER WAALS
P = 27-2
V-b
FOR
VJL
MIXTURES
OF FLUIDS
PURE
()-1
29
=====
-
YRT - In (P(X)),
PURE In
RT
n() =
-
y-b
MIXTURE
bi
=
X,P
v-b
a = {xi xj aij,
b = x; bj
29
YRT -In (P(b)),
2(x,a +x1)_
YRT
a12 = √11-922
921 = 912
911 = a₁
a22 = 92
RT
RT
a₁ =
کــ
=
For 2:
UBX
END
1-2, 2-1
27 RT
R
64 Pe
RTC
8 Pc
L
Transcribed Image Text:Equations of state for pure fugacity EOS P=N VAN DER WAALS y2= a2ly2 Mx Fugacities from EOS: EOS RT VAN DER WAALS P = 27-2 V-b FOR VJL MIXTURES OF FLUIDS PURE ()-1 29 ===== - YRT - In (P(X)), PURE In RT n() = - y-b MIXTURE bi = X,P v-b a = {xi xj aij, b = x; bj 29 YRT -In (P(b)), 2(x,a +x1)_ YRT a12 = √11-922 921 = 912 911 = a₁ a22 = 92 RT RT a₁ = کــ = For 2: UBX END 1-2, 2-1 27 RT R 64 Pe RTC 8 Pc L
9a3MAUU (3) EOS-vdw: Mx Fugacities (EOS): Argon(1)+Ethylene(2)-- Use vdw for mixtures
Hw11.124 Ar (39.94) + C2H4 (28.05)
DATA
T, OR
P.atm
m, lb
536.67
81.42
157
39.94
CALC.3
Activities: a1 & a2
Pure f0 eq:
Fugacity, F10
b1/(v-b)-2(x1*a11+x2*a12)/vRT-In[P(v-b)/RT]
Pure Ar
Find: Pur+Mx
CALC.1
Mixture v
Molar volume (CALC.2
vdW
Use goalseek P=RT/[v-b]-alv^2
vdw-mx Find:
Fugacities in Mx
Formula: In(f1/y1P)=
Fugacity, F1
P=
81.419
Mx v=
4.1645
b[v-b]
2[...]/vRT
0.145798
0.512132
MW1
MW2
28.05
In[P(v-b)/RT] -0.30531
y1
0.75
In[fly1P)
y2
0.25
Pure v10
MW, Av!
36.9675
Molar vol (pure1)
P10
81.41936
goal-seek.pu v10= 4.4922
sum=
fly1P
f1=
-0.06102
0.9408
57.45 atm
cf. 61.065 atm y1*P
nT, Ibm 4.2469737
Fugacity, f2
Pure v20
R, gas c
0.7302 cuft atm/lbmol.R
P20
p571
goal-seek.pɩ v20
Molar Vol(pure2]
81.42001
1.8801
b2l(v-b)
2[...]/RT
0.259374
0.935135
In[P(v-b)/RT] -0.30531
1 a11=a1
b1
346.36941
0.5170999
sum=
f2ly1P
2 a22-a2
1154.848
|f2=
-0.37045
0.690422
14.054 atm
cf. 20.355 atm y2*P
b2
0.9199204
a12=
632.4587
bm
0.617805
In(f/P)=b/(v-b)-2a/(vRT)-In[P(v-b)/RT]
bl(v-b) 0.130086
2al(vRT) 0.393519
In([P(v-b) -0.19129
sum
-0.07215
F10/P
F10
0.930394
75.75271
a1=f1f10
cf. 0.75
Pure C2-
y1= aly1
Fugacity, f20
1.0112
bl(v-b) 0.958098
2al((vRT) 3.134952
In[P(v-b) -1.61199
sum
F20P
-0.56487
0.568437
f20
46.28211
a2=f2f20
cf.0.25
y2= a2ly2
Transcribed Image Text:9a3MAUU (3) EOS-vdw: Mx Fugacities (EOS): Argon(1)+Ethylene(2)-- Use vdw for mixtures Hw11.124 Ar (39.94) + C2H4 (28.05) DATA T, OR P.atm m, lb 536.67 81.42 157 39.94 CALC.3 Activities: a1 & a2 Pure f0 eq: Fugacity, F10 b1/(v-b)-2(x1*a11+x2*a12)/vRT-In[P(v-b)/RT] Pure Ar Find: Pur+Mx CALC.1 Mixture v Molar volume (CALC.2 vdW Use goalseek P=RT/[v-b]-alv^2 vdw-mx Find: Fugacities in Mx Formula: In(f1/y1P)= Fugacity, F1 P= 81.419 Mx v= 4.1645 b[v-b] 2[...]/vRT 0.145798 0.512132 MW1 MW2 28.05 In[P(v-b)/RT] -0.30531 y1 0.75 In[fly1P) y2 0.25 Pure v10 MW, Av! 36.9675 Molar vol (pure1) P10 81.41936 goal-seek.pu v10= 4.4922 sum= fly1P f1= -0.06102 0.9408 57.45 atm cf. 61.065 atm y1*P nT, Ibm 4.2469737 Fugacity, f2 Pure v20 R, gas c 0.7302 cuft atm/lbmol.R P20 p571 goal-seek.pɩ v20 Molar Vol(pure2] 81.42001 1.8801 b2l(v-b) 2[...]/RT 0.259374 0.935135 In[P(v-b)/RT] -0.30531 1 a11=a1 b1 346.36941 0.5170999 sum= f2ly1P 2 a22-a2 1154.848 |f2= -0.37045 0.690422 14.054 atm cf. 20.355 atm y2*P b2 0.9199204 a12= 632.4587 bm 0.617805 In(f/P)=b/(v-b)-2a/(vRT)-In[P(v-b)/RT] bl(v-b) 0.130086 2al(vRT) 0.393519 In([P(v-b) -0.19129 sum -0.07215 F10/P F10 0.930394 75.75271 a1=f1f10 cf. 0.75 Pure C2- y1= aly1 Fugacity, f20 1.0112 bl(v-b) 0.958098 2al((vRT) 3.134952 In[P(v-b) -1.61199 sum F20P -0.56487 0.568437 f20 46.28211 a2=f2f20 cf.0.25 y2= a2ly2
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The