9.4 Refer to Figure P9.4, for which L, = 2.4 m, L2 = 4.6 m, y = 15.7 kN/m', Yat = 17.3 kN/m , and o' = 30°, and c = 29 kN/m?. a. What is the theoretical depth of embedment, D? b. Increase D by 40%. What length of sheet piles is needed? c. Determine the theoretical maximum moment in the sheet pile.

Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Braja M. Das, Nagaratnam Sivakugan
Chapter15: Retaining Walls, Braced Cuts, And Sheet Pile Walls
Section: Chapter Questions
Problem 15.22P
icon
Related questions
Question

I am looking for the solution for 9.4 and 9.6, thank you

9.1 Figure P9.1 shows a cantilever sheet pile wall penetrating a granular soil. Here,
L = 4 m, L2 = 8 m, y = 16.1 kN/m', Ysa = 18.2 kN/m, and d' = 32°.
a. What is the theoretical depth of embedment, D?
b. For a 30% increase in D, what should be the total length of the sheet piles?
c. Determine the theoretical maximum moment of the sheet pile.
9.2 Redo Problem 9.1 with the following: L, = 3 m, L2 = 6 m, y = 17.3 kN/m,
Yal = 19.4 kN/m³ , and o' = 30°.
9.3 Refer to Figure 9.10. Given: L = 3 m, y = 16.7 kN/m², and d' = 30°. Calculate
the theoretical depth of penetration, D, and the maximum moment.
9.4 Refer to Figure P9.4, for which L = 2.4 m, L2 = 4.6 m, y = 15.7 kN/m ,
Yai = 17.3 kN/m² , and d' = 30°, and c = 29 kN/m?.
a. What is the theoretical depth of embedment, D?
b. Increase D by 40%. What length of sheet piles is needed?
c. Determine the theoretical maximum moment in the sheet pile.
9.5 Refer to Figure 9.14. Given: L = 4 m; for sand, y = 16 kN/m; o' = 35°; and,
for clay, Ysa = 19.2 kN/m and c = 45 kN/m?. Determine the theoretical value
of D and the maximum moment.
9.6 An anchored sheet pile bulkhead is shown in Figure P9.6. Let L, = 4 m,
L, = 9 m, , = 2 m, y = 17 kN/m², Y = 19 kN/m , and o' = 34°.
a. Calculate the theoretical value of the depth of embedment, D.
b. Draw the pressure distribution diagram.
c. Determine the anchor force per unit length of the wall.
Use the free earth-support method.
Transcribed Image Text:9.1 Figure P9.1 shows a cantilever sheet pile wall penetrating a granular soil. Here, L = 4 m, L2 = 8 m, y = 16.1 kN/m', Ysa = 18.2 kN/m, and d' = 32°. a. What is the theoretical depth of embedment, D? b. For a 30% increase in D, what should be the total length of the sheet piles? c. Determine the theoretical maximum moment of the sheet pile. 9.2 Redo Problem 9.1 with the following: L, = 3 m, L2 = 6 m, y = 17.3 kN/m, Yal = 19.4 kN/m³ , and o' = 30°. 9.3 Refer to Figure 9.10. Given: L = 3 m, y = 16.7 kN/m², and d' = 30°. Calculate the theoretical depth of penetration, D, and the maximum moment. 9.4 Refer to Figure P9.4, for which L = 2.4 m, L2 = 4.6 m, y = 15.7 kN/m , Yai = 17.3 kN/m² , and d' = 30°, and c = 29 kN/m?. a. What is the theoretical depth of embedment, D? b. Increase D by 40%. What length of sheet piles is needed? c. Determine the theoretical maximum moment in the sheet pile. 9.5 Refer to Figure 9.14. Given: L = 4 m; for sand, y = 16 kN/m; o' = 35°; and, for clay, Ysa = 19.2 kN/m and c = 45 kN/m?. Determine the theoretical value of D and the maximum moment. 9.6 An anchored sheet pile bulkhead is shown in Figure P9.6. Let L, = 4 m, L, = 9 m, , = 2 m, y = 17 kN/m², Y = 19 kN/m , and o' = 34°. a. Calculate the theoretical value of the depth of embedment, D. b. Draw the pressure distribution diagram. c. Determine the anchor force per unit length of the wall. Use the free earth-support method.
Sand
Sand
Water table
Water table
Sand
Sand
Ysat
Yat
c =0
c'= 0
Dredge line
Sand
Ysat
c'= 0
D
D
Clay
Figure P9.1
d'=0
Figure P9.4
Sand
Sand
L
P,
Sand
Clay
Figure 9.10 Sheet piling penetrating
a sandy soil in the abscnce of the
Ysal
d' =0
water table
L4
Figure 9.14 Sheet-pile wall penetrating clay
Transcribed Image Text:Sand Sand Water table Water table Sand Sand Ysat Yat c =0 c'= 0 Dredge line Sand Ysat c'= 0 D D Clay Figure P9.1 d'=0 Figure P9.4 Sand Sand L P, Sand Clay Figure 9.10 Sheet piling penetrating a sandy soil in the abscnce of the Ysal d' =0 water table L4 Figure 9.14 Sheet-pile wall penetrating clay
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps

Blurred answer
Knowledge Booster
Experimental methods
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Fundamentals of Geotechnical Engineering (MindTap…
Fundamentals of Geotechnical Engineering (MindTap…
Civil Engineering
ISBN:
9781305635180
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning