4. Find the width of the belt, necessary to transmit 7.5 kW to a pulley 300 mm diameter, if the pulley makes 1600 r.p.m and the coefficient of friction between the belt and the pulley is 0.22. Assume the angle of contact as 210° and the maximum tension in the belt is not to exceed 8 N/mm width. [Ans. 67.4 mm]
4. Find the width of the belt, necessary to transmit 7.5 kW to a pulley 300 mm diameter, if the pulley makes 1600 r.p.m and the coefficient of friction between the belt and the pulley is 0.22. Assume the angle of contact as 210° and the maximum tension in the belt is not to exceed 8 N/mm width. [Ans. 67.4 mm]
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![4.
Find the width of the belt, necessary to transmit 7.5 kW to a pulley 300 mm diameter, if the pulley
makes 1600 r.p.m and the coefficient of friction between the belt and the pulley is 0.22. Assume the
angle of contact as 210° and the maximum tension in the belt is not to exceed 8 N/mm width.
[Ans. 67.4 mm]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F286e68f4-eb9a-4c47-b0d1-ab7760917ffe%2F00dd0d58-02f7-4053-b5f9-310450b32c6e%2Ft7n7eh_processed.jpeg&w=3840&q=75)
Transcribed Image Text:4.
Find the width of the belt, necessary to transmit 7.5 kW to a pulley 300 mm diameter, if the pulley
makes 1600 r.p.m and the coefficient of friction between the belt and the pulley is 0.22. Assume the
angle of contact as 210° and the maximum tension in the belt is not to exceed 8 N/mm width.
[Ans. 67.4 mm]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 6 images

Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY