1. Consider the following LTI system. d²y dy du +7 +6y= -- +2u, t≥0 dt² dt dt a) What is the impulse response of the system? Recall, h(t) = L-¹(H(s)). b) What are poles and zeros of the system? c) Suppose the initial condition of the system is y(0) = 1 and y'(0) = 4. What is the zero-input response of the system? d) Consider an input u(t) = (1 + et) 1(t) to the system. What is the zero-state response of the system for this input? e) Suppose, the initial condition was y(0) = -2 and y'(0) = -8 and the input is u(t)=(1+e) 1(t). What will be the total response of the system? You should be able to answer this using the linearity property of the system and your answers in part b and part c without taking any inverse Laplace transform.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
1. Consider the following LTI system.
d²y
dy
du
+7
+6y=
--
+2u,
t≥0
dt²
dt
dt
a) What is the impulse response of the system? Recall, h(t) = L-¹(H(s)).
b) What are poles and zeros of the system?
c) Suppose the initial condition of the system is y(0) = 1 and y'(0) = 4. What
is the zero-input response of the system?
d) Consider an input u(t) = (1 + et) 1(t) to the system. What is the zero-state
response of the system for this input?
e) Suppose, the initial condition was y(0) = -2 and y'(0) = -8 and the input is
u(t)=(1+e) 1(t). What will be the total response of the system? You
should be able to answer this using the linearity property of the system and your
answers in part b and part c without taking any inverse Laplace transform.
Transcribed Image Text:1. Consider the following LTI system. d²y dy du +7 +6y= -- +2u, t≥0 dt² dt dt a) What is the impulse response of the system? Recall, h(t) = L-¹(H(s)). b) What are poles and zeros of the system? c) Suppose the initial condition of the system is y(0) = 1 and y'(0) = 4. What is the zero-input response of the system? d) Consider an input u(t) = (1 + et) 1(t) to the system. What is the zero-state response of the system for this input? e) Suppose, the initial condition was y(0) = -2 and y'(0) = -8 and the input is u(t)=(1+e) 1(t). What will be the total response of the system? You should be able to answer this using the linearity property of the system and your answers in part b and part c without taking any inverse Laplace transform.
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,