8-1 Discussion - LOD
docx
keyboard_arrow_up
School
Southern New Hampshire University *
*We aren’t endorsed by this school
Course
350
Subject
Mechanical Engineering
Date
Jan 9, 2024
Type
docx
Pages
2
Uploaded by Darkmaster1939
Linear algebra is used quite a bit in the digital world. For instance, computer graphics boil down to the the manipulation of matrices. We saw this in the second project. The data for a image is stored in a matrix with the rows and columns representing the rows and columns of pixels of the graphic, and the values representing the color value that should be displayed from at the pixel. Manipulation of these values is how video games display the environment to the player. In 3D games, this is done with polygonal structures. This essentially breaks the images down into a wireframe of vectors, where the smaller the polygon is, the more detailed the image is. This level
of detail (LOD), can be changed, depending on how close the camera is to the object. In the majority cases, until recent, the LOD had to be predetermined by the programmer. In the Unreal Engine 5, a relatively new version of the engine, they incorporated something called nanite. Nanite removed the need for the developer to create these LODs. The engine analyzes the model and predetermines the amount of polygons that can be applied to it and will smoothly adjust depending on distance. This could change the future of video game graphics by reducing the loss
in quality to near zero, allowing for much more realistic looking games. As an aspiring game developer myself, understanding the manipulation of vectors and matrices is fairly important. Whether I'm creating a game from scratch and need to figure out to properly display an image, or
I'm using an engine, like Unreal, where that is handled for me, knowing how to work through linear algebra can be the difference of a good game or a mess. An example of this would be from
one of my previous projects I did in Unreal. In this project, the player could shoot an arrow from a bow. To direct the arrow in front of the player, I had to get the forward vector, the direction the
player was facing, and add it to the players location, also stored as vector. With this calculation applied to the spawning of the arrow, it appears at the player and moves in the forward direction. While this is one example, making a video game, at its core, is just a lot of vector and matrix calculations.
Computer Graphics
. Fluids at Brown. (n.d.). https://www.cfm.brown.edu/people/dobrush/cs52/Mathematica/Part7/graphics.html#:~:text=In
%20Computer%20Graphics%2C%20matrices%20are,environment%20and%20characters%20in
%20game.
Nanite virtualized geometry
. in Unreal Engine | Unreal Engine 5.0 Documentation. (n.d.). https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Documents
Related Questions
I need help in the following MATLAB code. How do I add the code to answer the following question "Do you find more object detections in the image than the one that is cropped out? Explain how you would discriminate that from a dead pixel, a hot pixel, or a cosmic ray event."
fname = '00095337.fit';
fInfo = fitsinfo(fname);
img = fitsread(fname);
% Crop the image to show just the object:
img_cropped = img(1980:2030,1720:1780);
% Load the labeled image
img_labeled = imread('00095337_labeled_stars.png');
img_labeled = img_labeled(102:863,605:1363,:);
% Get rid of "hot" pixels (cosmic rays, disfunctional pixels)
max_acceptable_value = 1300;
img(img>max_acceptable_value) = max_acceptable_value;
% Plot the images
f1 = figure();
tgroup1 = uitabgroup('Parent',f1);
tab(1) = uitab('Parent', tgroup1, 'Title', 'Raw image');
ax(1) = axes('parent',tab(1));
imagesc(img)
axis equal
axis([0,size(img,2),0,size(img,1)]+0.5)
colormap(gray(256));
xlabel('x [px]')
ylabel('y [px]')…
arrow_forward
Please do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful!
Please do not copy other's work,i will be very very grateful!!
arrow_forward
For the Following question Graph all 4 : [I just need all 4 graphs and please explain and make clean solution]
Position vs time
Velocity vs time
Acceleration vs time
Force vs time
[For your convenience, I have solved the numerical solutions for the problem] (Please Look at the picture since it is much cleaner)
Question : A 550 kilogram mass initially at rest acted upon by a force of F(t) = 50et Newtons. What are the acceleration, speed, and displacement of the mass at t = 4 second ?
a =(50 e^t)/(550 ) [N/kg]
v = ∫_0^t▒(50 e^t )dt/(550 )= v_0 +(50 e^t-50)/550=((e^t- 1))/11
x = ∫_0^t▒(e^t- 1)dt/(11 )= x_0 +(e^t- t - 1)/(11 )
a(4s)=(50*54.6)/550= 4.96[m/s^2 ]
v(4s)=((e^4-1))/11= 4.87[m/s]
x(4s)=((e^4- 4 - 1))/11= 4.51 [m]
arrow_forward
Help me with this ENGINEERING GRAPHICS problem.
arrow_forward
I am trying to find a Direction Cosine Matrix (DCM) for the Euler angle body 1-2-3 sequence. I tried making my own function and using the MATLAB function, but the result is matrices that are not equal to each other. But, if I were to use the 'ZYX' sequence, I would get a matrix that is equal to the transpose of the matrix produced by my function.I mean that transpose(EA123toDCM) = E123toDCM if I changed the sequence to 'ZYX'. I never got two equal matrices. Can you fix my code so I would get two equal DCM matrices for the body 1-2-3 sequence?
Also, for the E123toDCM line, I am using the sequence 'XYZ'. Is that correct or should it be 'ZYX'? I know that that for a DCM of sequence 1-2-3 = R3(theta1)*R2(theta2)*R1(theta3). Is ZYX sequence the same as a 1-2-3 sequence?
EA = [pi/3; -pi/4; -pi/6];EA123toDCM = EA123DCM(EA)
E123toDCM = angle2dcm(EA(1,1), EA(2,1), EA(3,1), 'XYZ')
function [R] = EA123DCM(EA)
theta1 = EA(1,1); theta2 = EA(2,1); theta3 = EA(3,1); R1 =…
arrow_forward
HW_5_01P.pdf
PDF
File | C:/Users/Esther/Downloads/HW_5_01P.pdf
2 Would you like to set Microsoft Edge as your default browser?
Set as default
To be most productive with Microsoft Edge, finish setting up your
Complete setup
Maybe later
browser.
(D Page view A Read aloud V Draw
7 Highlight
2
of 3
Erase
5. Two cables are tied to the 2.0 kg ball shown below. The ball revolves in a horizontal
circle at constant speed. (Hint: You will need to use some geometry and properties of
triangles and their angles!)
60°
1.0 m
60°
© 2013 Pearson Education, Inc.
(a) For what speed is the tension the same in both cables?
(b) What is the tension?
2.
2:04 PM
O Type here to search
C A
2/9/2021
(8)
arrow_forward
I need help solving this problem.
arrow_forward
Use matlab to solve the question
arrow_forward
You are watching a live concert. You can also find the concert streaming live on Spotify. About how far must you stand from the stage in order for
the live concert and the live stream to be perfectly in sync?
HINT: Assume the radio signal (Spotify) has to travel all the way around the Earth.
circumference of the Earth (average): 40,041,000 m
Speed of sound: 345 m/s
Speed of light: 300,000,000 m/s
arrow_forward
What is an element by element operation in matlab?
arrow_forward
Matlab coding
arrow_forward
Please examine how you got answer step by step please
arrow_forward
A mechanic changing a tire rolls a wheel along the ground towards the car. The radius of the
wheel is 42cm, and the speed of the wheel as it rolls is 2 revolutions per second.
Height Above Ground
(m)
radiu
HIDE
wheel spet
Time
The diagram above illustrates the vertical motion of a point on the tire over time. It is possible to model
the height of this point using a sinusoidal function of the form h(t)=-a sin[b(t-c)]+d.
a) Determine the length of time required for one revolution of the tire.
b) State the numerical value for each of the parameters a, b, c & d.
And write a function representing the motion of the point in the form h(t)= -a sin[b(t−c)]+d.
arrow_forward
5. When two frames have the same orientation, then the (W,P,R) values of their corresponding
frame transformations are
(a) zero
(b) non-zero
6. The robot programmer sets up UT[1] for a sharp-tip pointer that is held by the robot gripper.
If UT[1] is accurate, it means that
(a) UT[1] is activated in the robot system
(b) The origin of UT[1] frame in the robot system is exactly at the tip of the actual pointer
(c) The origin of UT[1] is aligned with the origin of Def-TCP frame
arrow_forward
The Pascal triangle can be displayed as elements in a lower-triangular matrix as shown on the right. Write a MATLAB program that creates a n × n matrix that displays n rows of Pascal’s triangle. Use the program to create 4 and 7 rows Pascal’s triangles. (One way to calculate the value of the elements in the lower portion of the matrix is
arrow_forward
I need help with my MATLAB code. I am trying to plot the semi major axis and eccentricity with the following code with rungge kutta method. I have two different nnn's in the code which produce two different step sizes. So, I am wondering why both give the same exact plots for semi-major axis and eccentricity. The orbital dynamics fucntion considers J2, drag, SRP, and third body effects.
% Orbital elements obtained from TLE
inc = 63.5000118; % Inclination (degs)
raan = 19.999977; % RAAN (degs)
ecc = 0.001; % Eccentricity
argp = 120.02165342; % argument of perigee (degs)
v = 0; % True anomaly (degs)
a = 6584.697271; % Semi-major axis (km)
mu = 3.986e5;
period = (2*pi*sqrt((a^3)/mu));
% Calculating the state vector in eci frame
[x, y, z, vx, vy, vz] = kep2cart(a, ecc, inc, raan, argp, v);
Y = [x, y, z, vx, vy, vz];
options = odeset('RelTol', 1e-12, 'AbsTol', 1e-12);
nnn1 = 800;
t_step1 = period/nnn1;
m6 = 50;
h_step6 = t_step1/m6;
t_total6 = 0:h_step6:10*period;
[t6,…
arrow_forward
Look up the Arduino Mega 2560. Document the steps how to work with the Arduino in Matlab and Simulink. Make a simulink program turning on the LED on the board for 10sec. Explain your program, comment on your findings and explain how to test it on the actual hardware.
arrow_forward
Given: Mass = M,
Radius = R,
Moment of Inertia = I,
Distance = H,
Gravity = g,
Initial timing = 0
Unknown =
How long will the [delta t] process take? (time)
Please keep in mind that almost every variable is unknown! We are given no numbers and are instructed to generate a solution using the variables [ "R, M, g, I and H." ]
Target =
Find an equation that, if we could substitute numbers, would determine how long the process would take.
Newton's second law and torque seem to be relevant based on how the problem is written.
* Also please show drawing based on what we are calculating
arrow_forward
hi ive have nearly completed this model but i am stuck on a couple last parts. Firstly, the holes on the top need to be placed 30 degrees from the y axis as shown in the handout but also the middle part is meant to have triangular "supports" rather than rectangular and im not sure how to cut them down. This is in autodesk inventor but any help here would be appreciated Once again just the top holes being moved 30 degrees and the support being cut down to the triangular shape shown in the handout
arrow_forward
I'm confused on starting the problem and I'm lost. Please help
arrow_forward
Please assist with this question. I reviewed the lecture notes that was given and do not understand. Please answer with a detailed explanation. Thank you. I believe there is an easier way to solve this using matlab apparently but I dont know.
I will have an image of the reference slide.
arrow_forward
Help me solve this using MATLAB
arrow_forward
Note: please show step by step solution. Hence, double check the solution. For correction purposes!. I require handwritten working out please!. Kindly, please meticulously, check the image for conceptual understanding and for extra information purposes!. Also on occasions, I receive wrong answers!!. Please go through the question and working out step by step when you finish them. Appreciate your time!.
Sub Note: (read this as well please!)
The provided image, where it says "sub part of question". Its part of the same question. So this is not a new question being asked. And thus, follows the guidelines of bartleby!. Thanks!
arrow_forward
AutoSave
STATICS - Protected View• Saved to this PC -
O Search (Alt+Q)
Off
ERIKA JOY DAILEG
EJ
File
Home
Insert
Draw
Design
Layout
References
Mailings
Review
View
Help
Acrobat
O Comments
E Share
PROTECTED VIEW Be careful-files from the Internet can contain viruses. Unless you need to edit, it's safer to stay in Protected View.
Enable Editing
Situation 9 - A 6-m long ladder weighing 600 N is shown in the Figure. It is required to determine
the horizontal for P that must be exerted at point C to prevent the ladder from sliding. The
coefficient of friction between the ladder and the surface at A and B is 0.20.
25. Determine the reaction at A.
26. Determine the reaction at B.
27. Determine the required force P.
4.5 m
1.5 m
H=0.2
30°
Page 5 of 5
671 words
D. Focus
100%
C
ЕPIC
GAMES
ENG
7:24 pm
w
US
16/02/2022
IZ
arrow_forward
For the following concentration expressions, indicate whether they are uniform or nonuniform
and in how many dimensions (OD, 1D, 2D, or 3D), and steady or unsteady. Then for the following
control volume and origin, and table of constants, use Excel or Matlab to graph profiles that
show how concentration changes within the control volume and over time to a limit of 20 for
the following: C(x,0,0,0), C(0,y,0,0), c(0,0,z,0) and C(0,0,0,t). On each graph, show which
parameters are held constant, the CV boundaries, and the point where all four plots overlap.
20
C(x=0)
10
a
0.0001
b
0.001
20
0.01
y
k
0.1
100
All of the following functions are C(space, time) and so not necessarily just x as suggested.
a. C,(x)= C,(x = 0)x exp{- ax}
d. C, (x) = C, (x = 0)x exp{-ax}x exp{- by² }x exp{-cz²}x exp{- kt}
arrow_forward
I was given a practice question for transforming equation. In the image I will have a slide the lecture note of an example of it being done but I do not understand what was done exactly. Please explain how to answer the question. Thank you
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- I need help in the following MATLAB code. How do I add the code to answer the following question "Do you find more object detections in the image than the one that is cropped out? Explain how you would discriminate that from a dead pixel, a hot pixel, or a cosmic ray event." fname = '00095337.fit'; fInfo = fitsinfo(fname); img = fitsread(fname); % Crop the image to show just the object: img_cropped = img(1980:2030,1720:1780); % Load the labeled image img_labeled = imread('00095337_labeled_stars.png'); img_labeled = img_labeled(102:863,605:1363,:); % Get rid of "hot" pixels (cosmic rays, disfunctional pixels) max_acceptable_value = 1300; img(img>max_acceptable_value) = max_acceptable_value; % Plot the images f1 = figure(); tgroup1 = uitabgroup('Parent',f1); tab(1) = uitab('Parent', tgroup1, 'Title', 'Raw image'); ax(1) = axes('parent',tab(1)); imagesc(img) axis equal axis([0,size(img,2),0,size(img,1)]+0.5) colormap(gray(256)); xlabel('x [px]') ylabel('y [px]')…arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forwardFor the Following question Graph all 4 : [I just need all 4 graphs and please explain and make clean solution] Position vs time Velocity vs time Acceleration vs time Force vs time [For your convenience, I have solved the numerical solutions for the problem] (Please Look at the picture since it is much cleaner) Question : A 550 kilogram mass initially at rest acted upon by a force of F(t) = 50et Newtons. What are the acceleration, speed, and displacement of the mass at t = 4 second ? a =(50 e^t)/(550 ) [N/kg] v = ∫_0^t▒(50 e^t )dt/(550 )= v_0 +(50 e^t-50)/550=((e^t- 1))/11 x = ∫_0^t▒(e^t- 1)dt/(11 )= x_0 +(e^t- t - 1)/(11 ) a(4s)=(50*54.6)/550= 4.96[m/s^2 ] v(4s)=((e^4-1))/11= 4.87[m/s] x(4s)=((e^4- 4 - 1))/11= 4.51 [m]arrow_forward
- Help me with this ENGINEERING GRAPHICS problem.arrow_forwardI am trying to find a Direction Cosine Matrix (DCM) for the Euler angle body 1-2-3 sequence. I tried making my own function and using the MATLAB function, but the result is matrices that are not equal to each other. But, if I were to use the 'ZYX' sequence, I would get a matrix that is equal to the transpose of the matrix produced by my function.I mean that transpose(EA123toDCM) = E123toDCM if I changed the sequence to 'ZYX'. I never got two equal matrices. Can you fix my code so I would get two equal DCM matrices for the body 1-2-3 sequence? Also, for the E123toDCM line, I am using the sequence 'XYZ'. Is that correct or should it be 'ZYX'? I know that that for a DCM of sequence 1-2-3 = R3(theta1)*R2(theta2)*R1(theta3). Is ZYX sequence the same as a 1-2-3 sequence? EA = [pi/3; -pi/4; -pi/6];EA123toDCM = EA123DCM(EA) E123toDCM = angle2dcm(EA(1,1), EA(2,1), EA(3,1), 'XYZ') function [R] = EA123DCM(EA) theta1 = EA(1,1); theta2 = EA(2,1); theta3 = EA(3,1); R1 =…arrow_forwardHW_5_01P.pdf PDF File | C:/Users/Esther/Downloads/HW_5_01P.pdf 2 Would you like to set Microsoft Edge as your default browser? Set as default To be most productive with Microsoft Edge, finish setting up your Complete setup Maybe later browser. (D Page view A Read aloud V Draw 7 Highlight 2 of 3 Erase 5. Two cables are tied to the 2.0 kg ball shown below. The ball revolves in a horizontal circle at constant speed. (Hint: You will need to use some geometry and properties of triangles and their angles!) 60° 1.0 m 60° © 2013 Pearson Education, Inc. (a) For what speed is the tension the same in both cables? (b) What is the tension? 2. 2:04 PM O Type here to search C A 2/9/2021 (8)arrow_forward
- I need help solving this problem.arrow_forwardUse matlab to solve the questionarrow_forwardYou are watching a live concert. You can also find the concert streaming live on Spotify. About how far must you stand from the stage in order for the live concert and the live stream to be perfectly in sync? HINT: Assume the radio signal (Spotify) has to travel all the way around the Earth. circumference of the Earth (average): 40,041,000 m Speed of sound: 345 m/s Speed of light: 300,000,000 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY