Copy of 5AL Pre-Lab 3 Submission Template - F23
pptx
keyboard_arrow_up
School
University of California, Los Angeles *
*We aren’t endorsed by this school
Course
4AL
Subject
Mechanical Engineering
Date
Apr 3, 2024
Type
pptx
Pages
6
Uploaded by GeneralWillpower14460
5AL Pre-Lab 3 Assignment
[], [10/26/2023], [G27 ]
When finished adding your responses on each slide, save this as a PDF file and upload it to your Gradescope assignment.
Slide 2: If the track is 2.00 m in length, and one end is raised vertically by 30.0 cm, what is the angle θ with the horizontal that the track makes (show your equations and answer with units for all slides)?
Slide 3: What is the acceleration of block down the incline? Show your work and answer with units.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Slide 4: What is the normal force being exerted by the track on the block, if its mass is 0.500 kg? Show your work.
Slide 5: If the block is released from the top of the incline at rest, what will its speed be when it gets to the bottom, and how long did it take to get there? Show your work.
Slide 6: If the block is now launched upwards from the bottom of the track at an initial velocity v
x0
= 2.00 m/s, what distance up the track will the block go before turning around and falling back? Show your work.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Documents
Related Questions
Can you write me a program manuscript using geometric definition on FAPT language.
The starting point is P1 and starts where the blue dot is. P1 = 0,0
arrow_forward
Hello I’m trying to make the graph that you see in the picture, I’m trying the exact copy of that graph using this code but I’m having a hard time doing that. Could you change the code so that it looks like the graph that you see on the picture using MATLAB, please send the code when you are finished.
% Sample data for Diesel and Petrol cars
carPosition = linspace(1, 60, 50); % Assumed positions of cars
% Fix the random seed for reproducibility
rng(45);
% Assumed positions of cars
CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel
CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol
% Fit polynomial curves
pDiesel = polyfit(carPosition, CO2Diesel, 3);
pPetrol = polyfit(carPosition, CO2Petrol, 3);
% Generate points for best fit lines
fitDiesel = polyval(pDiesel, carPosition);
fitPetrol = polyval(pPetrol, carPosition);
% Plotting the data
figure; hold on;
scatter(carPosition, CO2Diesel, 'o', 'MarkerEdgeColor', [1 0.5…
arrow_forward
I’m making the graph that you see in the picture but the code that I’m using makes the line with to many curves. Could you make the lines look like the one that you see on the graph. Don’t change the color just make it with a little bit less curves like you see in the picture.
Use this code on MATLAB and fix it.
% Sample data for Diesel and Petrol cars
carPosition = linspace(1, 60, 50); % Assumed positions of cars
% Fix the random seed for reproducibility
rng(50);
% Assumed CO2 emissions for Diesel and Petrol
CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel
CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol
% Fit polynomial curves
pDiesel = polyfit(carPosition, CO2Diesel, 3);
pPetrol = polyfit(carPosition, CO2Petrol, 3);
% Generate points for best fit lines
fitDiesel = polyval(pDiesel, carPosition);
fitPetrol = polyval(pPetrol, carPosition);
% Combined best fit
combinedFit = (fitDiesel + fitPetrol) / 2;…
arrow_forward
I’m using this code in MATLAB but for some odd reason every time I run it on MATLAB I keep on getting a different graphs. In the picture that shows two different graphs are from the same code, but I need to it to look like the picture that has one graph. Could you please fix it. To make it look like the picture that has one graph?
Here is the code:
% Sample data for Diesel and Petrol
carPosition = linspace(1, 60, 50); % Assumed positions of cars
CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel
CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol
% Fit polynomial curves
pDiesel = polyfit(carPosition, CO2Diesel, 3);
pPetrol = polyfit(carPosition, CO2Petrol, 3);
% Generate points for best fit lines
fitDiesel = polyval(pDiesel, carPosition);
fitPetrol = polyval(pPetrol, carPosition);
% Plotting the data
figure;
hold on;
scatter(carPosition, CO2Diesel, 'o', 'MarkerEdgeColor', [1 0.5 0]); % Diesel data…
arrow_forward
Please include a kinamatic diagram (for velocity)
Please DO NOT solve this using velocity analysis (cartesian vector analysis). I would like it to be solved using scalar method. We dont use 3D in this course. We only use scalar analysis for the relative velocity equation as requested in the question (writing the x and y components of the equation and solving the equations for the unknowns). Below I have attached a sample question with solution in order to get an idea on how to use the scalar method to solve my question. I would like question this to be solved in a similar way. Thank you for your understanding.
If you can solve it as soon as possible that would be great and I will give you a thumps up and positive feedback :)
arrow_forward
Please help show me how drawing will look in isometric drawing.
arrow_forward
There is a small space between the orange and purple line could you please connect the two lines together also can you please make the purple line shorter and then connect the purple line to the orange line, please take out the box that says “Diesel, petrol, Diesel best fit, petrol best fit”. Also when ever I run this code the graph shows up but there are still errors that comes up could you please fix them when you are running this on MATLAB.
Please use this code on MATLAB and fix it.
% Sample data for Diesel and Petrol cars
carPosition = linspace(1, 60, 50); % Assumed positions of cars
% Fix the random seed for reproducibility
rng(50);
% Assumed CO2 emissions for Diesel and Petrol
CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel
CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol
% Fit polynomial curves
pDiesel = polyfit(carPosition, CO2Diesel, 3);
pPetrol = polyfit(carPosition, CO2Petrol, 3);
% Generate…
arrow_forward
Could you please fix my code it’s supposed to look like the graph that’s on the picture. But the lines do not cross eachother at the beginning. Could you make the lines look like the lines on the graph?
Use this code in MATLAB and fix it.
% Sample data for Diesel and Petrol cars
carPosition = linspace(1, 60, 50); % Assumed positions of cars
% Define your seed here
seed = 50;
rand('seed',seed); % Set the seed for reproducibility
% Assumed CO2 emissions for Diesel and Petrol
CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel
CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol
% Fit polynomial curves with a reduced degree of 2
pDiesel = polyfit(carPosition, CO2Diesel, 2);
pPetrol = polyfit(carPosition, CO2Petrol, 2);
% Generate points for best fit lines
fitDiesel = polyval(pDiesel, carPosition);
fitPetrol = polyval(pPetrol, carPosition);
% Plotting the data
figure;
hold on;
% Plot Diesel best fit line…
arrow_forward
Can you help me with this problem?
P1 is where the blue dot is
arrow_forward
I was going over the equations for the notes in class and I had a thought. Based on the equations in the image, you could get negative propellant mass. So, I coded it in matlab and I got negative mass. How is that possible? I think I used practical values for the velocity and mass ratio and so on. Did I do something wrong?
arrow_forward
convert height to cm
File Edit View Insert Format Data Tools
100%
% .0 .00 123
D20
fx |
A
1
5 feet
2
11 inches
3
cm
4
The preceding image shows a Google Sheet used to convert length in feet and inches to
cm. What formula should be entered into A3 so that the correct length is computed in cm
(in cell A3)? Your answer must work with any values the user might enter in cells A1 and A2.
Choose all that apply
a) = A1*12*2.54 + A2*2.54
b) = (5*12 + 11) * 2.54
%3D
c) = B1*12*2.54 + B2*2.54
d) A1*12*2.54 + A2*2.54
e) = (A1*12 + A2) * 2.54
f) = A1*12 + A2 * 2.54
%24
田
arrow_forward
Hi I need help to make the line change into a different color, I half of the line to be orange and I need the other half of the line towards the end to be purple as shown in the picture. Also I need there be a box saying Diesel, petrol, diesel best fit, petrol best fit. This part is also shown in the graph.
Please use this code and fix it in MATLAB:
% Sample data for Diesel and Petrol cars
carPosition = linspace(1, 60, 50); % Assumed positions of cars
% Fix the random seed for reproducibility
rng(50);
% Assumed positions of cars
CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel
CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol
% Fit polynomial curves
pDiesel = polyfit(carPosition, CO2Diesel, 3);
pPetrol = polyfit(carPosition, CO2Petrol, 3);
% Generate points for best fit lines
fitDiesel = polyval(pDiesel, carPosition);
fitPetrol = polyval(pPetrol, carPosition);
% Combine the best fit lines
combinedFit =…
arrow_forward
Show all steps and formulas
arrow_forward
I need help with the purple line the line that you see one the graph on the picture needs to be on the graph.
Use this code to add the purple line and make sure it’s crossing the orange line. Please make sure the lines are positioned the same way it is shown on the picture with the graph.
Use this code on MATLAB and add the purple line.
% Sample data for Diesel and Petrol cars
carPosition = linspace(1, 60, 50); % Assumed positions of cars
% Use the 'seed' function instead of 'rng'
seed = 50; % Define your seed here
rand('seed',seed);
% Assumed CO2 emissions for Diesel and Petrol
CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel
CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol
% Fit polynomial curves with a reduced degree of 2
pDiesel = polyfit(carPosition, CO2Diesel, 2);
pPetrol = polyfit(carPosition, CO2Petrol, 2);
% Generate points for best fit lines
fitDiesel = polyval(pDiesel, carPosition);…
arrow_forward
Please solve question 16-109 below this in the follwoing way:
Please include a kinamatic diagram (one for velocity and one for acceleration).
Please DO NOT solve this using velocity analysis (cartesian vector analysis). I would like it to be solved using scalar method. We dont use 3D in this course. We only use scalar analysis for the relative velocity equation (writing the x and y components of the equation and solving the equations for the unknowns). I have attached a sample question with solution in order to get an idea on how to use the scalar method to solve my question. I would like question 16-109 to be solved in a similar way. Thank you for your understanding.
If you can solve it as soon as possible that would be great and I will give you a thumps up and positive feedback :)
arrow_forward
Please provide the correct matlab code for the following question.
arrow_forward
Please answer all three subparts.
I will really upvote. Thanks
arrow_forward
My professor said that I need to use the numbers as shown on the picture and make the exact graph that is also shown on the picture. But I don’t know how to put this in to MATLAB. Please send the code that makes the graph that is shown in the picture. Make it 100% exactly the same.
arrow_forward
(xo, Yo)
Ay = Number
(x,y)
CC) 00
BY SA
USask Engineering
Given the above graph plotting y position against a position, where 0 = 0 m, 30 = -4 m, z = 5 m, and y0 = 0 m, what the change in vertical position
over this time interval? Write your answer as an integer.
m
→X
arrow_forward
PLEASE: Can you write out the answers. Typing it out doesn't make sense all together
arrow_forward
4:16
Search
Expert Q&A
Done
Please solve question 16-109 below this in the
follwoing way:
• Please include a kinamatic diagram (one for
velocity and one for acceleration).
• Please DO NOT solve this using velocity
analysis (cartesian vector analysis). I would
like it to be solved using scalar method. We
dont use 3D in this course. We only use scalar
analysis for the relative velocity equation
(writing the x and y components of the
equation and solving the equations for the
unknowns). I have attached a sample question
with solution in order to get an idea on how to
use the scalar method to solve my question. I
would like question 16-109 to be solved in a
similar way. Thank you for your
understanding.
If you can solve it as soon as possible that
would be great and I will give you a thumps up
and positive feedback :)
16-109. Member AB has the angular motions shown.
Determine the angular velocity and angular acceleration of
members CB and DC.
100 mm
D
60°
450 mm
W
AB
α AB
84
= 2 rad/s
= 4…
arrow_forward
\ח
"Chicago - Lakeshore Dr from John Hancock Center" by Ryan from Toronto, CA CC BY 2.0
This image is taken from the John Hancock Center and is an aerial view near Oak Street Beach. The
general speed limit on Jean Baptiste Point DuSable Lake Shore Drive, shown in this image, is 40
mph. As you travel south on the drive, you must enter the curve south of Oak Street Beach (at Point
..AL
-far
BIKI
O Search
Hintain
11
3
SIM
arrow_forward
Don't Use Chat GPT Will Upvote And Give Handwritten Solution Please
arrow_forward
sample calculations
目
File Edit View Insert Format Data To
100%
$ % .0
.00 12:
fx |
A
1
Variable
Value
Units
diameter
height
m
4
volume
m^3
3
The image above shows a section of a Google sheet. What formula should be written in cell
B4 to calculate the volume of a cylinder with a diameter value in B2 and height in B3?
a) =0.25*PI()*B2^2 * B3
b) =PI()*B2^2 * B3
c) =pi*diameter^2 * height
d) =PI*B2^2 * B3
3 5
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- Can you write me a program manuscript using geometric definition on FAPT language. The starting point is P1 and starts where the blue dot is. P1 = 0,0arrow_forwardHello I’m trying to make the graph that you see in the picture, I’m trying the exact copy of that graph using this code but I’m having a hard time doing that. Could you change the code so that it looks like the graph that you see on the picture using MATLAB, please send the code when you are finished. % Sample data for Diesel and Petrol cars carPosition = linspace(1, 60, 50); % Assumed positions of cars % Fix the random seed for reproducibility rng(45); % Assumed positions of cars CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol % Fit polynomial curves pDiesel = polyfit(carPosition, CO2Diesel, 3); pPetrol = polyfit(carPosition, CO2Petrol, 3); % Generate points for best fit lines fitDiesel = polyval(pDiesel, carPosition); fitPetrol = polyval(pPetrol, carPosition); % Plotting the data figure; hold on; scatter(carPosition, CO2Diesel, 'o', 'MarkerEdgeColor', [1 0.5…arrow_forwardI’m making the graph that you see in the picture but the code that I’m using makes the line with to many curves. Could you make the lines look like the one that you see on the graph. Don’t change the color just make it with a little bit less curves like you see in the picture. Use this code on MATLAB and fix it. % Sample data for Diesel and Petrol cars carPosition = linspace(1, 60, 50); % Assumed positions of cars % Fix the random seed for reproducibility rng(50); % Assumed CO2 emissions for Diesel and Petrol CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol % Fit polynomial curves pDiesel = polyfit(carPosition, CO2Diesel, 3); pPetrol = polyfit(carPosition, CO2Petrol, 3); % Generate points for best fit lines fitDiesel = polyval(pDiesel, carPosition); fitPetrol = polyval(pPetrol, carPosition); % Combined best fit combinedFit = (fitDiesel + fitPetrol) / 2;…arrow_forward
- I’m using this code in MATLAB but for some odd reason every time I run it on MATLAB I keep on getting a different graphs. In the picture that shows two different graphs are from the same code, but I need to it to look like the picture that has one graph. Could you please fix it. To make it look like the picture that has one graph? Here is the code: % Sample data for Diesel and Petrol carPosition = linspace(1, 60, 50); % Assumed positions of cars CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol % Fit polynomial curves pDiesel = polyfit(carPosition, CO2Diesel, 3); pPetrol = polyfit(carPosition, CO2Petrol, 3); % Generate points for best fit lines fitDiesel = polyval(pDiesel, carPosition); fitPetrol = polyval(pPetrol, carPosition); % Plotting the data figure; hold on; scatter(carPosition, CO2Diesel, 'o', 'MarkerEdgeColor', [1 0.5 0]); % Diesel data…arrow_forwardPlease include a kinamatic diagram (for velocity) Please DO NOT solve this using velocity analysis (cartesian vector analysis). I would like it to be solved using scalar method. We dont use 3D in this course. We only use scalar analysis for the relative velocity equation as requested in the question (writing the x and y components of the equation and solving the equations for the unknowns). Below I have attached a sample question with solution in order to get an idea on how to use the scalar method to solve my question. I would like question this to be solved in a similar way. Thank you for your understanding. If you can solve it as soon as possible that would be great and I will give you a thumps up and positive feedback :)arrow_forwardPlease help show me how drawing will look in isometric drawing.arrow_forward
- There is a small space between the orange and purple line could you please connect the two lines together also can you please make the purple line shorter and then connect the purple line to the orange line, please take out the box that says “Diesel, petrol, Diesel best fit, petrol best fit”. Also when ever I run this code the graph shows up but there are still errors that comes up could you please fix them when you are running this on MATLAB. Please use this code on MATLAB and fix it. % Sample data for Diesel and Petrol cars carPosition = linspace(1, 60, 50); % Assumed positions of cars % Fix the random seed for reproducibility rng(50); % Assumed CO2 emissions for Diesel and Petrol CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol % Fit polynomial curves pDiesel = polyfit(carPosition, CO2Diesel, 3); pPetrol = polyfit(carPosition, CO2Petrol, 3); % Generate…arrow_forwardCould you please fix my code it’s supposed to look like the graph that’s on the picture. But the lines do not cross eachother at the beginning. Could you make the lines look like the lines on the graph? Use this code in MATLAB and fix it. % Sample data for Diesel and Petrol cars carPosition = linspace(1, 60, 50); % Assumed positions of cars % Define your seed here seed = 50; rand('seed',seed); % Set the seed for reproducibility % Assumed CO2 emissions for Diesel and Petrol CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol % Fit polynomial curves with a reduced degree of 2 pDiesel = polyfit(carPosition, CO2Diesel, 2); pPetrol = polyfit(carPosition, CO2Petrol, 2); % Generate points for best fit lines fitDiesel = polyval(pDiesel, carPosition); fitPetrol = polyval(pPetrol, carPosition); % Plotting the data figure; hold on; % Plot Diesel best fit line…arrow_forwardCan you help me with this problem? P1 is where the blue dot isarrow_forward
- I was going over the equations for the notes in class and I had a thought. Based on the equations in the image, you could get negative propellant mass. So, I coded it in matlab and I got negative mass. How is that possible? I think I used practical values for the velocity and mass ratio and so on. Did I do something wrong?arrow_forwardconvert height to cm File Edit View Insert Format Data Tools 100% % .0 .00 123 D20 fx | A 1 5 feet 2 11 inches 3 cm 4 The preceding image shows a Google Sheet used to convert length in feet and inches to cm. What formula should be entered into A3 so that the correct length is computed in cm (in cell A3)? Your answer must work with any values the user might enter in cells A1 and A2. Choose all that apply a) = A1*12*2.54 + A2*2.54 b) = (5*12 + 11) * 2.54 %3D c) = B1*12*2.54 + B2*2.54 d) A1*12*2.54 + A2*2.54 e) = (A1*12 + A2) * 2.54 f) = A1*12 + A2 * 2.54 %24 田arrow_forwardHi I need help to make the line change into a different color, I half of the line to be orange and I need the other half of the line towards the end to be purple as shown in the picture. Also I need there be a box saying Diesel, petrol, diesel best fit, petrol best fit. This part is also shown in the graph. Please use this code and fix it in MATLAB: % Sample data for Diesel and Petrol cars carPosition = linspace(1, 60, 50); % Assumed positions of cars % Fix the random seed for reproducibility rng(50); % Assumed positions of cars CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol % Fit polynomial curves pDiesel = polyfit(carPosition, CO2Diesel, 3); pPetrol = polyfit(carPosition, CO2Petrol, 3); % Generate points for best fit lines fitDiesel = polyval(pDiesel, carPosition); fitPetrol = polyval(pPetrol, carPosition); % Combine the best fit lines combinedFit =…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY