BIOS255 Lab Week3
docx
keyboard_arrow_up
School
Chamberlain University College of Nursing *
*We aren’t endorsed by this school
Course
255
Subject
Mechanical Engineering
Date
Feb 20, 2024
Type
docx
Pages
6
Uploaded by HighnessMorning11005
Paola Rodriguez
BIOS255 BIOS255 Week 3 Cardiovascular System: Blood Vessels Learning objectives:
Identify the structural layers of arteries and veins.
Distinguish between the structure of arteries and veins.
Explain the factors that affect arterial blood flow and blood pressure.
Define shock, and identify the signs of shock.
Identify key blood vessels of the cardiac, systemic, and pulmonary circulations.
Introduction:
Blood is transported around the body in 3 different types of blood vessels: arteries, capillaries, and veins. Arteries and veins are each composed of 3 distinct layers of tissue while capillaries only have one layer. Blood pressure and flow depend on multiple
factors. There are a number of mechanisms by which shock can occur.
We will track blood through the pulmonary and systemic circulations noting the major arteries and veins along the path. Enjoy the interactive 3D models for exploring the blood vessels!
Assignment:
Part 1 Complete the activities in the following sections of Anatomy.TV Cardiovascular system
: Blood vessels, Blood flow and Pressure, Circulatory Pathways, Vessels of the Trunk, Vessels of the Head and Neck, Vessels of the Limbs To access Anatomy.TV: Resources tab>Library>Library Resources-Database A-
Z>Anatomy.TV>Titles(default tab): Choose Cardiovascular system>choose assigned sections
You will then work through the material and activities by scrolling down on the right. This
will allow you to see and work through all activities for that section.
As you complete the lab activities, have the lab report ready to record data.
Part 2 Complete the lab report.
Blood vessel Lab report
1.
Describe the different types of blood vessels by completing the following chart: (3 points total; 1/4 point per box)
Blood vessel
Histological description/special characteristics
Function
Large arteries
Well define internal and external laminae, tunica media is thick and full of elastic fibers. (Elastic arteries)
Propel blood from heart during ventricular diastole.
Propel blood from heart during ventricular diastole.
Propel blood from heart during ventricular diastole.
Propel blood from heart during ventricular diastole.
Medium arteries
Less elastic well defined internal but thin external elastic laminae. (Distributing arteries
Maintain state of partial contraction or vascular tone.
Arterioles
Numerous microscopic arteries that feed blood into capillary networks. (Resistance vessels)
Vasoconstriction, vasodilation, regular blood flow, BP, and vascular resistance.
Capillaries
Short, branched interconnecting vessels that form networks within body
structures. (Exchange vessels)
Provide large surface area in contact with tissues throughout the body.
Medium veins
1 cm in diameter, 3 layers of blood vessels. Does not have internal or external laminae so unable to withstand high pressure.
Boost venous return by preventing back flow of blood due to gravity.
Large veins
Up to 3 cm in diameter, thick tunica
external but no valves.
Drain into heart.
2.
When a fall in arterial pressure is detected by baroreceptors, how does the cardiovascular center alter the parasympathetic and sympathetic stimulation of the sinoatrial (SA) node to maintain homeostasis? (1 point)
The sympathetic nervous system will release chemicals like adrenaline and norepinephrine, which will speed up the heart, when something similar happens. While
acetylcholine and other chemicals are released by the parasympathetic nervous system
to reduce the heart rate. 3.
Describe the signs and symptoms of shock as described under Blood Flow and Pressure: Shock and Homeostasis. (1 point)
Because of what the circulatory system is doing at the moment, you begin to experience a shortage of blood flow into the body's tissues throughout the shock process. At that point, a person will begin to breathe quickly and have a rapid heartbeat. The parasympathetic nervous system negates the impact in order for the body to achieve equilibrium.
4.
Identify the missing arteries from the schematic. (2.5 points; 1/2 point each)
Right external carotid
Left internal carotid Left Vertebral Artery
Arch of Aorta
Right subclavian artery
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
5.
Identify the missing arteries from the schematic: (3 points total; ¼ point each)
Right Renal
Right common iliac
Left Renal
Left common iliac Inferior Mesenteric
Coeliac Trunk
6.
Trace a drop of blood from the heart to the top of the foot by naming the blood vessels from the aorta to the artery that can be felt on the top of the foot (dorsalis pedis artery). First it would start at the arch of aorta, then thoracic aorta, abdominal aorta, external iliac artery, femoral artery, after the popliteal artery, anterior tibial artery and last the dorsalis pedis artery.
7.
Trace a drop of blood from the superior mesenteric vein within the abdomen to the right atrium. Include the major vessels along the path. (1.5 points)
The superior mesenteric vein, then the superior mesenteric vein drains into the hepatic portal vein, then move into the inferior vena cava and lastly the inferior vena cava drains
blood into the right atrium.
8.
a. What is a portal system? (½ point) It’s a system that collect from one set of capillaries then passes through a large vessel, then to a set of capillaries.
b. What is the function of the hepatic portal system? (½ point)
It is a highly significant system that involves the venous system and sends blood from the spleen and digestive tract to the liver, where it undergoes processing before returning to the heart.
Grading Rubric for Lab Report
Activity
Deliverable
Points
Part 1
Complete lab activities
15
Part 2
Complete lab report 15
Total
Complete all lab activities
30
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Questions
Help!!! Please answer all Correctly!!! Please
arrow_forward
Analysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (OW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/OW, Mean (+-)1SD NW/OW) were created. Analyse and Interpret the graphs attached.
arrow_forward
Help!!! Please answer part b correctly like part A. Please!!!!
arrow_forward
How may acoustic designers alter the design of a room, which was previously used for music performances, into a room now to be used for spoken word performances? Use annotated diagrams for your response
arrow_forward
Learning Goal:
To use the principle of linear impulse and momentum to relate a force on an object to the resulting velocity of the object at different times.
The equation of motion for a particle of mass m
can be written as
∑F=ma=mdvdt
By rearranging the terms and integrating, this equation becomes the principle of linear impulse and momentum:
∑∫t2t1Fdt=m∫v2v1dv=mv2−mv1
For problem-solving purposes, this principle is often rewritten as
mv1+∑∫t2t1Fdt=mv2
The integral ∫Fdt is called the linear impulse, I, and the vector mv is called the particle's linear momentum.
A tennis racket hits a tennis ball with a force of F=at−bt2, where a = 1300 N/ms , b = 300 N/ms2 , and t is the time (in milliseconds). The ball is in contact with the racket for 2.90 ms . If the tennis ball has a mass of 59.7 g , what is the resulting velocity of the ball, v, after the ball is hit by the racket?
arrow_forward
After creating a decision matrix for two types of materials used to design a safety belt, an engineer assigns a weight of 4 to nylon for thickness and a weight of 5 to polyester for thickness. The engineer also assigns a weight of 4 to nylon for strength and a weight of 3 to polyester for strength. Polyester is more expensive than nylon. Describe which material would be preferable to use for the safety belt, if cost is prioritized as a criterion
arrow_forward
Learning Goal:
To describe the shape and behavior of cables that are subjected to concentrated and
distributed loads.
Part A
Structures often use flexible cables to support members and to transmit loads between
structural members. Because a cable's weight is often significantly smaller than the
load it supports, a cable's weight is considered negligible and, therefore, not used in
the analysis.
In this tutorial, cables are assumed to be perfectly flexible and inextensible. Thus, once
the load is applied the geometry of the cable remains fixed and the cable segment can
be treated as a rigid body.
Cables of negligible weight support the loading shown. (Figure 1) If W, = 85.0 N , W, = 510 N, YB = 1.40 m, yc = 2.80 m, yp = 0.700 m, and zc = 0.850 m, find zg.
Express your answer numerically in meters to three significant figures.
> View Available Hint(s)
VO AEoI vec
IB = 2.048
m
Submit
Previous Answers
X Incorrect; Try Again; 4 attempts remaining
Part B Complete previous part(s)
W2
O…
arrow_forward
Learning Goal:
To calculate the normal and shear stresses at a point on the cross
section of a column.
A column with a wide-flange section has a flange width b = 250 mm , height k = 250 mm , web thickness to = 9 mm , and flange thickness t; = 14 mm (Figure 1).
Calculate the stresses at a point 65 mm above the neutral axis if the section supports a tensile normal force N = 2 kN at the centroid, shear force V = 5.8 kN , and
bending moment M = 3 kN - m as shown (Figure 2).
The state of stress at a point is a description of the normal and shear
stresses at that point. The normal stresses are generally due to both
internal normal force and internal bending moment. The net result can
be obtained using the principle of superposition as long as the
deflections remain small and the response is elastic.
Part A- Normal stress
Calculate the normal stress at the point due to the internal normal force on the section.
Express your answer with appropriate units to three significant figures.
• View…
arrow_forward
Show work
Part 1 website: https://ophysics.com/r5.html
PArt 2 website: https://ophysics.com/r3.html
arrow_forward
Having found FcD in the analysis of joint C, there are now only two unknown forces acting on joint D. Determine the two unknown forces on joint D.
Express your answers in newtons to three significant figures. Enter negative value in the case of compression and positive value in the case of tension.
Enter your answers separated by a comma.
arrow_forward
You are working in a biology lab during your summer break. Your supervisor asks you to perform an experiment to find the effective spring constant
(in N/m) of a partial molecule of DNA (deoxyribonucleic acid). You perform experiments and find that a single straight portion of a DNA molecule is
2.19 μm long. You then perform an activity that charges the ends of the molecule; each end becomes singly ionized: negative on one end, positive on
the other. After the ends are charged, the molecule shrinks by 1.31% of its length.
1.21e-9
arrow_forward
Help!!! Please answer part B correctly!!! Please
arrow_forward
Help!!! Please answer all Correctly!!! Please
arrow_forward
Problem 1
Learning Goal:
To be able to find the center of gravity, the center of mass, and the centroid of a
composite body.
A centroid is an object's geometric center. For an object of uniform composition,
its centroid is also its center of mass. Often the centroid of a complex composite
body is found by, first, cutting the body into regular shaped segments, and then
by calculating the weighted average of the segments' centroids.
Figure
←d→
x
Part A
IVE ΑΣΦ | 4
T, 1.610,0.5075
Submit
An object is made from a uniform piece of sheet metal. The object has dimensions of a = 1.20 ft ,b= 3.74 ft, and c = 2.45 ft. A hole with diameter d = 0.600 ft is centered at (1.00, 0.600).
Find z, y, the coordinates of the body's centroid. (Figure 1)
Express your answers numerically in feet to three significant figures separated by a comma.
▸ View Available Hint(s)
Previous Answers
Provide Feedback
vec •
* Incorrect; Try Again; 4 attempts remaining
?
1 of 5
ft
Review
>
Next >
Activate Windows
Go to…
arrow_forward
As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…
arrow_forward
As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…
arrow_forward
Learning Task 2:
Changes in momentum happen every time. A fast-moving car when suddenly stopped might have damaging effects not
only to the vehicle itself but also to the person riding it. Various devices have been installed in vehicles to ensure the safety of
the passengers. Can you think of some safety devices installed on vehicles (public/private)? Name at least five (5) of them.
arrow_forward
I want to briefly summarize what he is talking about and what you conclude.
pls very urgent
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- Help!!! Please answer all Correctly!!! Pleasearrow_forwardAnalysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (OW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/OW, Mean (+-)1SD NW/OW) were created. Analyse and Interpret the graphs attached.arrow_forwardHelp!!! Please answer part b correctly like part A. Please!!!!arrow_forward
- How may acoustic designers alter the design of a room, which was previously used for music performances, into a room now to be used for spoken word performances? Use annotated diagrams for your responsearrow_forwardLearning Goal: To use the principle of linear impulse and momentum to relate a force on an object to the resulting velocity of the object at different times. The equation of motion for a particle of mass m can be written as ∑F=ma=mdvdt By rearranging the terms and integrating, this equation becomes the principle of linear impulse and momentum: ∑∫t2t1Fdt=m∫v2v1dv=mv2−mv1 For problem-solving purposes, this principle is often rewritten as mv1+∑∫t2t1Fdt=mv2 The integral ∫Fdt is called the linear impulse, I, and the vector mv is called the particle's linear momentum. A tennis racket hits a tennis ball with a force of F=at−bt2, where a = 1300 N/ms , b = 300 N/ms2 , and t is the time (in milliseconds). The ball is in contact with the racket for 2.90 ms . If the tennis ball has a mass of 59.7 g , what is the resulting velocity of the ball, v, after the ball is hit by the racket?arrow_forwardAfter creating a decision matrix for two types of materials used to design a safety belt, an engineer assigns a weight of 4 to nylon for thickness and a weight of 5 to polyester for thickness. The engineer also assigns a weight of 4 to nylon for strength and a weight of 3 to polyester for strength. Polyester is more expensive than nylon. Describe which material would be preferable to use for the safety belt, if cost is prioritized as a criterionarrow_forward
- Learning Goal: To describe the shape and behavior of cables that are subjected to concentrated and distributed loads. Part A Structures often use flexible cables to support members and to transmit loads between structural members. Because a cable's weight is often significantly smaller than the load it supports, a cable's weight is considered negligible and, therefore, not used in the analysis. In this tutorial, cables are assumed to be perfectly flexible and inextensible. Thus, once the load is applied the geometry of the cable remains fixed and the cable segment can be treated as a rigid body. Cables of negligible weight support the loading shown. (Figure 1) If W, = 85.0 N , W, = 510 N, YB = 1.40 m, yc = 2.80 m, yp = 0.700 m, and zc = 0.850 m, find zg. Express your answer numerically in meters to three significant figures. > View Available Hint(s) VO AEoI vec IB = 2.048 m Submit Previous Answers X Incorrect; Try Again; 4 attempts remaining Part B Complete previous part(s) W2 O…arrow_forwardLearning Goal: To calculate the normal and shear stresses at a point on the cross section of a column. A column with a wide-flange section has a flange width b = 250 mm , height k = 250 mm , web thickness to = 9 mm , and flange thickness t; = 14 mm (Figure 1). Calculate the stresses at a point 65 mm above the neutral axis if the section supports a tensile normal force N = 2 kN at the centroid, shear force V = 5.8 kN , and bending moment M = 3 kN - m as shown (Figure 2). The state of stress at a point is a description of the normal and shear stresses at that point. The normal stresses are generally due to both internal normal force and internal bending moment. The net result can be obtained using the principle of superposition as long as the deflections remain small and the response is elastic. Part A- Normal stress Calculate the normal stress at the point due to the internal normal force on the section. Express your answer with appropriate units to three significant figures. • View…arrow_forwardShow work Part 1 website: https://ophysics.com/r5.html PArt 2 website: https://ophysics.com/r3.htmlarrow_forward
- Having found FcD in the analysis of joint C, there are now only two unknown forces acting on joint D. Determine the two unknown forces on joint D. Express your answers in newtons to three significant figures. Enter negative value in the case of compression and positive value in the case of tension. Enter your answers separated by a comma.arrow_forwardYou are working in a biology lab during your summer break. Your supervisor asks you to perform an experiment to find the effective spring constant (in N/m) of a partial molecule of DNA (deoxyribonucleic acid). You perform experiments and find that a single straight portion of a DNA molecule is 2.19 μm long. You then perform an activity that charges the ends of the molecule; each end becomes singly ionized: negative on one end, positive on the other. After the ends are charged, the molecule shrinks by 1.31% of its length. 1.21e-9arrow_forwardHelp!!! Please answer part B correctly!!! Pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY