Solutions for Numerical Analysis
Problem 2E:
Find the (infinity norm) condition number of (a) A=[ 1234 ] (b) A=[ 12.0136 ] (c) A=[ 6342 ]Problem 3E:
Find the forward and backward errors, and the error magnification factor (in the infinity norm) for...Problem 4E:
Find the forward and backward errors and error magnification factor for the following approximate...Problem 5E:
Find the relative forward and backward errors and error magnification factor for the following...Problem 6E:
Find the relative forward and backward errors and error magnification factor for the following...Problem 7E:
Find the norm H of the 55 Hilbert matrix.Problem 8E:
(a) Find the condition number of the coefficient matrix in the system [ 111+1 ][ x1x2 ]=[ 22+ ] as a...Problem 9E:
(a) Find the condition number (in the infinity norm) of the matrix A=[ 010001100 ] . (b) Let D be an...Problem 10E:
(a) Find the (infinity norm) condition number of the matrix A=[ 1224.001 ]. (b) Let b=[ 36.001 ] and...Problem 11E:
(a) Prove that the infinity norm x is a vector norm. (b) Prove that the 1-norm x 1 is a vector...Problem 12E:
(a) Prove that the infinity norm A is a matrix norm. (b) Prove that the 1-norm A 1 is a matrix...Problem 1CP:
For the nn matrix with entries Aij=5/(i+2j1), set x=[ 1,...,1 ]T and b=Ax . Use the MATLAB program...Problem 3CP:
Let A be the nn matrix with entries Aij=| ij |+1 . Define x=[ 1,...,1 ]T and b=Ax . For...Browse All Chapters of This Textbook
Chapter 0.1 - Evaluating A PolynomialChapter 0.2 - Binary NumbersChapter 0.3 - Floating Point Representation Of Real NumbersChapter 0.4 - Loss Of SignificanceChapter 0.5 - Review Of CalculusChapter 1.1 - The Bisection MethodChapter 1.2 - Fixed-point IterationChapter 1.3 - Limits Of AccuracyChapter 1.4 - Newton’s MethodChapter 1.5 - Root-finding Without Derivatives
Chapter 2.1 - Gaussian EliminationChapter 2.2 - The Lu FactorizationChapter 2.3 - Sources Of ErrorChapter 2.4 - The Pa = Lu FactorizationChapter 2.5 - Iterative MethodsChapter 2.6 - Methods For Symmetric Positive-definite MatricesChapter 2.7 - Nonlinear Systems Of EquationsChapter 3.1 - Data And Interpolating FunctionsChapter 3.2 - Interpolation ErrorChapter 3.3 - Chebyshev InterpolationChapter 3.4 - Cubic SplinesChapter 3.5 - Bézier CurvesChapter 4.1 - Least Squares And The Normal EquationsChapter 4.2 - A Survey Of ModelsChapter 4.3 - Qr FactorizationChapter 4.4 - Generalized Minimum Residual (gmres) MethodChapter 4.5 - Nonlinear Least SquaresChapter 5.1 - Numerical DifferentiationChapter 5.2 - Newton-cotes Formulas For Numerical IntegrationChapter 5.3 - Romberg IntegrationChapter 5.4 - Adaptive QuadratureChapter 5.5 - Gaussian QuadratureChapter 6.1 - Initial Value ProblemsChapter 6.2 - Analysis Of Ivp SolversChapter 6.3 - Systems Of Ordinary Differential EquationsChapter 6.4 - Runge–kutta Methods And ApplicationsChapter 6.5 - Variable Step-size MethodsChapter 6.6 - Implicit Methods And Stiff EquationsChapter 6.7 - Multistep MethodsChapter 7.1 - Shooting MethodChapter 7.2 - Finite Difference MethodsChapter 7.3 - Collocation And The Finite Element MethodChapter 8.1 - Parabolic EquationsChapter 8.2 - Hyperbolic EquationsChapter 8.3 - Elliptic EquationsChapter 8.4 - Nonlinear Partial Differential EquationsChapter 9.1 - Random NumbersChapter 9.2 - Monte Carlo SimulationChapter 9.3 - Discrete And Continuous Brownian MotionChapter 9.4 - Stochastic Differential EquationsChapter 10.1 - The Fourier TransformChapter 10.2 - Trigonometric InterpolationChapter 10.3 - The Fft And Signal ProcessingChapter 11.1 - The Discrete Cosine TransformChapter 11.2 - Two-dimensional Dct And Image CompressionChapter 11.3 - Huffman CodingChapter 11.4 - Modified Dct And Audio CompressionChapter 12.1 - Power Iteration MethodsChapter 12.2 - Qr AlgorithmChapter 12.3 - Singular Value DecompositionChapter 12.4 - Applications Of The SvdChapter 13.1 - Unconstrained Optimization Without DerivativesChapter 13.2 - Unconstrained Optimization With Derivatives
Sample Solutions for this Textbook
We offer sample solutions for Numerical Analysis homework problems. See examples below:
Given information: f(x)=x3−4x+1 Theorem used: Intermediate Value Theorem: If f is a continuous...Given information:Initial guesses x0=1 and x1=2 and equation is (a) x3=2x+2 . Calculation: With the...Chapter 2.7, Problem 1EChapter 3.5, Problem 1EChapter 4.5, Problem 1EChapter 5.5, Problem 1EChapter 6.7, Problem 1EChapter 7.3, Problem 1CPChapter 8.4, Problem 1E
More Editions of This Book
Corresponding editions of this textbook are also available below:
Student Solutions Manual for Numerical Analysis
2nd Edition
ISBN: 9780321783929
Numerical Analysis
2nd Edition
ISBN: 9780321783677
Numerical Analysis, Books A La Carte Edition (2nd Edition)
2nd Edition
ISBN: 9780321816764
EBK NUMERICAL ANALYSIS
3rd Edition
ISBN: 9780134699370
Numerical Analysis
3rd Edition
ISBN: 9780134697376
Numerical Analysis, Books A La Carte Edition (3rd Edition)
3rd Edition
ISBN: 9780134697338
Numerical Analysis
1st Edition
ISBN: 9780321268983
Student Solutions Manual For Numerical Analysis
1st Edition
ISBN: 9780321286864
Related Math Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.