
Concept explainers
(a)
Interpretation:
The equilibrium constant reaction must be written for the dissociation of HF(aq) to H + (aq) and F-(aq).
Concept introduction:
Acid dissociation constant (Ka) is small for weak acid. It is the ratio of concentration of products to reactants.
For a weak acid HA, Ka can be written as

Answer to Problem SII3RE
Equilibrium constant reaction is given below.
Explanation of Solution
Weak acid HF undergoes dissociation in aqueous solution to produce H + , F-. Thus the equilibrium constant reaction is given as the ratio of products to reactant.
(b)
Interpretation:
At equilibrium [H + ] is greater than, les than or equal to [F-] must be explained.
Concept introduction:
HF dissociates in aqueous solution to produce equal number of H + and F - ions.

Answer to Problem SII3RE
Concentration of H + will be equal to concentration of F-.
[H + ]=[F-]
Explanation of Solution
Thus from the dissociation equilibrium of HF it is clear that concentration of H + will be equal to concentration of F-.
(c)
Interpretation:
At equilibrium [H + ] is greater than, les than or equal to [HF] must be explained.
Concept introduction:
HF is weak acid and so it dissociates in aqueous solution partially to produce equal number of H + and F - ions.

Answer to Problem SII3RE
Concentration of H + will be less than concentration of HF.
[H + ]<[HF]
Explanation of Solution
Thus from the dissociation equilibrium of HF it is clear that the equilibrium is more towards reactant side. Thus HF dissociates partially to produce very less number of H + ions.
Thus concentration of H + will be less than the concentration of HF.
(d)
Interpretation:
The direction the shift in the equilibrium needs to be explained if more H + is added.
Concept introduction:
As per Le Chatelier’s principle if any product species is added then the equilibrium is shifted to reactant side.

Answer to Problem SII3RE
If more H + is added the equilibrium would shift to reactant side that is HF side.
Explanation of Solution
Thus from the dissociation equilibrium of HF it is clear that the equilibrium is more towards reactant side. Thus HF dissociates partially to produce very less number of H + ions. Now if more H + is added concentration of H + in aqueous solution will increase. To keep the Ka constant more HF will be produced. Thus the equilibrium would shift to left side or HF side.
Thus concentration of H + will be less than the concentration of HF.
(e)
Interpretation:
Whether [HF] increase, decrease or stay the same as the system proceeded back to equilibrium must be explained.
Concept introduction:
As per La Chatelier’s principle if any product species is added then the equilibrium is shifted to reactant side.

Answer to Problem SII3RE
[HF] would increase as the system proceeded back to equilibrium.
Explanation of Solution
Thus from the dissociation equilibrium of HF it is clear that the equilibrium is more towards reactant side. Thus HF dissociates partially to produce very less number of H + ions. Now if more H + is added concentration of H + in aqueous solution will increase. So an increase in equilibrium constant (Ka) is expected. It is not possible as equilibrium constant only changes when temperature is changed. To keep the Ka constant more HF will be produced. Thus the equilibrium would shift to left side or HF side such that the ratio of concentration of products ( H + and F - ions) to concentration of HF remains the same.
Chapter U6 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Applications and Investigations in Earth Science (9th Edition)
Introductory Chemistry (6th Edition)
Organic Chemistry (8th Edition)
- Please predict the products for each of the following reactions. Clearly show the regiochemistry (Markovnikov vs anti-Markovnikov) and stereochemistry (syn- vs anti- or both). If a mixture of enantiomers is formed, please draw all the enantiomers. Hint: In this case you must choose the best answer to demonstrate the stereochemistry of H2 addition. 1.03 2. (CH3)2S BIZ CH₂OH 2. DMS KMnO4, NaOH ΖΗ Pd or Pt (catalyst) HBr 20 1 HBr ROOR (peroxide) HO H-SO HC 12 11 10 BH, THE 2. H2O2, NaOH Brz cold HI 19 18 17 16 MCPBA 15 14 13 A Br H₂O BH3⚫THF Brz EtOH Pd or Ni (catalyst) D₂ (deuterium) 1. Os04 2. H2O2 CH3CO3H (peroxyacid) 1. MCPBA 2. H₂O* H B + H H H "H C H H Darrow_forwardExplain how Beer’s Law can be used to determine the concentration in a selected food sample. Provide examples.arrow_forwardExplain the importance of having a sampling plan with respect to food analysis. Explain the importance of having a sampling plan with respect to food analysis. Provide examples.arrow_forward
- Please predict the products for each of the following reactions. Clearly show the regiochemistry (Markovnikov vs anti-Markovnikov) and stereochemistry (syn- vs anti- or both). If a mixture of enantiomers is formed, please draw all the enantiomers. cold KMnO4, NaOH 2. DMS 1. 03 CH3OH Br2 1. 03 2. (CH3)2S H₂ Pd or Pt (catalyst) HBr 18 19 20 1 HBr ROOR (peroxide) H₂O H₂SO4 HCI HI 17 16 6 15 MCPBA 1. BH3 THF 2. H₂O2, NaOH 1. OsO4 2. H₂O₂ 110 CH3CO₂H (peroxyacid) 1. MCPBA 2. H₂O* Br2 H₂O BH3 THF B12 EtOH Pd or Ni (catalyst) D₂ (deuterium) Bra A B C D H OH H OH OH H OH α α α OH H OH OH фон d H "Harrow_forwardBriefly indicate the models that describe the structure of the interface: Helmholtz-Perrin, Gouy-Chapman, Stern and Grahame models.arrow_forwardElectrochemistry. Briefly describe the Gibbs model and the Gibbs absorption equation.arrow_forward
- Briefly state the electrocapillary equation for ideally polarized electrodes.arrow_forwardWhat is surface excess according to the Gibbs model?arrow_forwardUsing Benzene as starting materid show how each of the Following molecules Contel Ve syntheswed CHI 9. b -50311 с CHY 503H Ночто d. อ •NOV e 11-0-650 NO2arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





