(a)
Interpretation:
The IUPAC name for the given compound is to be written.
Concept introduction:
The IUPAC name of a compound is made of three parts, prefix, root, and suffix. If the compound contains different
If any chiral carbons are present, their absolute configurations are determined on the basis of Cahn-Ingold-Prelog rules, and listed at the start along with the carbon number.
(b)
Interpretation:
The IUPAC name for the given compound is to be written.
Concept introduction:
The IUPAC name of a compound is made of three parts, prefix, root, and suffix. If the compound contains different functional groups, the highest priority group is determined. This determines the suffix. The longest continuous chain of carbons that contains the highest priority group forms the root. The final ‘e’ in the name of the corresponding alkane is replaced by the suffix corresponding to the highest priority group, except in case of nitriles, when the suffix ‘nitrile’ is simply added to the root name. The position (locant) of the highest priority group on the longest chain is inserted between the root name and the suffix unless redundant. The longest carbon chain is numbered in the direction that gives the highest priority group the lowest possible locant. If the root is a ring, the position of highest priority group is always 1. Any other low priority groups are treated as substituents and listed alphabetically in the prefix along with their locants. In case of rings, the numbering of ring carbons is done in the direction that gives the substituents the lowest possible locants. If more than one instance of any functional group (including highest priority) is present, their numbers are specified by adding a di, tri, etc. to the respective functional group name.
If any chiral carbons are present, their absolute configurations are determined on the basis of Cahn-Ingold-Prelog rules, and listed at the start along with the carbon number.
(c)
Interpretation:
The IUPAC name for the given compound is to be written.
Concept introduction:
The IUPAC name of a compound is made of three parts, prefix, root, and suffix. If the compound contains different functional groups, the highest priority group is determined. This determines the suffix. The longest continuous chain of carbons that contains the highest priority group forms the root. The final ‘e’ in the name of the corresponding alkane is replaced by the suffix corresponding to the highest priority group, except in case of nitriles, when the suffix ‘nitrile’ is simply added to the root name. The position (locant) of the highest priority group on the longest chain is inserted between the root name and the suffix unless redundant. The longest carbon chain is numbered in the direction that gives the highest priority group the lowest possible locant. If the root is a ring, the position of highest priority group is always 1. Any other low priority groups are treated as substituents and listed alphabetically in the prefix along with their locants. In case of rings, the numbering of ring carbons is done in the direction that gives the substituents the lowest possible locants. If more than one instance of any functional group (including highest priority) is present, their numbers are specified by adding a di, tri, etc. to the respective functional group name.
If any chiral carbons are present, their absolute configurations are determined on the basis of Cahn-Ingold-Prelog rules, and listed at the start along with the carbon number.

Want to see the full answer?
Check out a sample textbook solution
Chapter F Solutions
ORG CHEM W/ EBOOK & SW5 + STUDY GUIDE
- (a) Sketch the 'H NMR of the following chemical including the approximate chemical shifts, the multiplicity (splitting) of all signals and the integration (b) How many signals would you expect in the 13C NMR? CH3arrow_forwardDraw the Show the major and minor product(s) for the following reaction mechanisms for both reactions and show all resonance structures for any Explain why the major product is favoured? intermediates H-Brarrow_forwardChoose the right answerarrow_forward
- 8. What is the major product of the following reaction? KMnO4 b a TOH OH OH C d OH "OH HO OH OHarrow_forwardChoose the right answerarrow_forward3. Draw ALL THE POSSBILE PRODUCTS AND THE MECHANISMS WITH ALL RESONANCE STRUCTURES. Explain using the resonance structures why the major product(s) are formed over the minor product(s). H₂SO4, HONO CHarrow_forward
- 7. Provide the product(s), starting material(s) and/or condition(s) required for the No mechanisms required. below reaction HO + H-I CI FO Br2, FeBr3 O I-Oarrow_forward6. Design the most efficient synthesis of the following product starting from phenot Provide the reaction conditions for each step (more than one step is required) and explain the selectivity of each reaction. NO MECHANISMS ARE REQUIRED. OH step(s) CIarrow_forwardWhat is the skeletal structure of the product of the following organic reaction?arrow_forward
- If a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forwardWhat is the major organic product of the following nucleophilic acyl substitution reaction of an acid chloride below?arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning




