
Concept explainers
Determine the mass moment ofinertia of the steel fixture of Probs. B.35 and B.39 with respect to the axis through the origin that forms equal angles with the x, y, and z axes.

The mass moment of the inertia of the steel fixture passes through the origin.
Answer to Problem B.56P
The mass moment of the inertia of the steel fixture passes through the origin is
Explanation of Solution
Given information:
Given information:
The density of the steel is
The following figure represents the given system.
Figure-(1)
Write the expression for the mass of component 1.
Here, the mass of component 1 is
Write the expression for the volume of the component 1.
Here, the sides of the component is
Write the expression for the mass moment of inertia for component 1.
Here, the mass moment of inertia for component 1 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia for component 2.
Here, the mass moment of inertia for component 2 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia with respect to centroidal axis.
Here, the mass moment of inertia for component 3 is
Write the expression for the mass moment of inertia for component 3.
Write the expression for the mass of component 2.
Here, the mass of component 2 is
Write the expression for volume of the component 2.
Here, the sides of the component is
Write the expression for the mass of component 3.
Here, the mass of component 3 is
Write the expression for volume of the component 3.
Here, the diameter of the circle is
Write the expression for the distance of the component 3.
Write the expression for the mass moment of inertia with respect to
Write the expression for the mass moment of inertia for component 1.
Here, the mass moment of inertia for component 1 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia for component 2.
Here, the mass moment of inertia for component 2 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia with respect to centroidal axis.
Here, the mass moment of inertia for component 3 is
Write the expression for the mass moment of inertia for component 3.
Write the expression for the distance of the component 3.
Write the expression for the mass moment of inertia with respect to
Write the expression for the mass moment of inertia for component 1.
Here, the mass moment of inertia for component 1 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia for component 2.
Here, the mass moment of inertia for component 2 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia with respect to centroidal axis.
Here, the mass moment of inertia for component 3 is
Write the expression for the mass moment of inertia for component 3.
Write the expression for the distance of the component 3.
Write the expression for the mass moment of inertia with respect to
Write the expression for the mass moment of inertia for component 1.
Here, the products of the inertia of the body with respect to centroidal axis for component 1 is
Write the expression for the mass moment of inertia for component 1.
Here, the products of the inertia of the body with respect to centroidal axis for component 1 is
Write the expression for the mass moment of inertia for component 1.
Here, the products of the inertia of the body with respect to centroidal axis for component 1 is
Write the expression for the mass moment of inertia for component 2.
Here, the products of the inertia of the body with respect to centroidal axis for component 2 is
Write the expression for the mass moment of inertia for component 2.
Here, the products of the inertia of the body with respect to centroidal axis for component 2 is
Write the expression for the mass moment of inertia for component 2.
Here, the products of the inertia of the body with respect to centroidal axis for component 2 is
Write the expression for the mass moment of inertia for component 3.
Here, the products of the inertia of the body with respect to centroidal axis for component 3 is
Write the expression for the mass moment of inertia for component 3.
Here, the products of the inertia of the body with respect to centroidal axis for component 3 is
Write the expression for the mass moment of inertia for component 3.
Here, the products of the inertia of the body with respect to centroidal axis for component 3 is
Write the expression for the mass product of inertia.
Here, the mass product of inertia is
Write the expression for the mass product of inertia.
Here, the mass product of inertia is
Write the expression for the mass product of inertia.
Here, the mass product of inertia is
Write the expression for the position vector of
Write the expression for the magnitude of the position vector
Write the expression for the unit vector.
Write the expression for the mass moment of the inertia of the steel fixture passes through the origin.
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
From Equation (LI) the unit vector along the different axis.
Substitute
Conclusion:
The mass moment of the inertia of the steel fixture passes through the origin is
Want to see more full solutions like this?
Chapter B Solutions
Vector Mechanics For Engineers
- A 23-ft3 rigid tank initially contains saturated refrigerant-134a vapor at 160 psia. As a result of heat transfer from the refrigerant, the pressure drops to 50 psia. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the heat transfer. The heat transfer is Btu.arrow_forwardThe shaft shown in the figure below is subjected to axial loads as illustrated. The diameters of segments AB, BC, and CD are 20mm, 25mm, and 15mm, respectively. If the modulus of elasticity of the material is 610 MPa. Determine the change of A to D lengtharrow_forwardDetermine the final pressure and temperature. The final pressure is kPa. The final temperature is ºC.arrow_forward
- Air enters the 1-m2 inlet of an aircraft engine at 100 kPa and 20°C with a velocity of 184 m/s. Determine the volume flow rate, in m3/s, at the engine’s inlet and the mass flow rate, in kg/s, at the engine’s exit. The gas constant of air is R = 0.287 kPa·m3/kg·K. The volume flow rate at the engine’s inlet m3/s. The mass flow rate at the engine’s exit is kg/s.arrow_forwardThe ventilating fan of the bathroom of a building has a volume flow rate of 33 L/s and runs continuously. If the density of air inside is 1.20 kg/m3, determine the mass of air vented out in one day. The mass of air is kg.arrow_forwardA steady-flow compressor is used to compress helium from 15 psia and 70°F at the inlet to 200 psia and 600°F at the outlet. The outlet area and velocity are 0.01 ft2 and 100 ft/s, respectively, and the inlet velocity is 53 ft/s. Determine the mass flow rate and the inlet area. The gas constant of helium is R = 2.6809 psia·ft3/lbm·R. The mass flow rate is lbm/s. The inlet area is ft2.arrow_forward
- 1. The maximum and minimum stresses as well as the shear stress seen subjected the piece in plane A-A. Assume it is a cylinder with a diameter of 12.7mm 2. Draw the Mohr circle for the stress state using software. 3. Selection of the material for the prosthesis, which must be analyzed from the point of safety and cost view.arrow_forwardMarrow_forward× Your answer is incorrect. (Manometer) Determine the angle 0 of the inclined tube shown in figure below if the pressure at A is 1 psi greater than that at B. 1ft SG=0.61 十 A Ꮎ 1ft SG=1.0 8.8 ft 0 = Hi 15.20 deg Airarrow_forward
- I don't know how to solve thisarrow_forward1. The maximum and minimum stresses as well as the shear stress seen subjected the piece in plane A-A. Assume it is a cylinder with a diameter of 12.7mm 2. Draw the Mohr circle for the stress state using software. 3. Selection of the material for the prosthesis, which must be analyzed from the point of safety and cost view.arrow_forwardFirst, define the coordinate system XY with its origin at O2 and X-axis passing through O4 asshown above, then based on the provided steps Perform coordinate transformation from XY to xy to get the trajectory of point P. Show all the steps and calcualtionsarrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
