Concept explainers
The mass moment of inertia of the machine component with respect to the axis through the origin characterized by the unit
Answer to Problem B.61P
The mass moment of inertia of the machine component with respect to the axis through the origin by the unit vector is
Explanation of Solution
Given information:
The diameter of the formed steel wire is
The below figure represents the schematic diagram of the wire.
Figure-(1)
Concept used:
Expression of mass of the steel wire.
Here, density of the steel wire is
Expression of density of the steel wire.
Here, the specific weight of the steel wire is
Substitute
For section (1).
Substitute
Expression of volume of the steel wire after formation for section (1).
Here, the diameter of the formed wire is
For section (2).
Substitute
Expression of volume of the steel wire after formation for section (2).
For section (3).
Substitute
Expression of volume of the steel wire after formation for section (3).
For section (4).
Substitute
Expression of volume of the steel wire after formation for section (4).
Expression of Moment of inertia about
Here, the moment of inertia of section (1) about the
Expression of moment of inertia of section (1) about the
Expression of moment of inertia of section (2) about the
Expression of moment of inertia of section (3) about the
Expression of moment of inertia of section (4) about the
Expression of Moment of inertia about
Here, the moment of inertia of section (1) about the
Expression of moment of inertia of section (1) about the
Expression of moment of inertia of section (2) about the
Expression of moment of inertia of section (3) about the
Expression of moment of inertia of section (4) about the
Expression of Moment of inertia about
Here, the moment of inertia of section (1) about the
Expression of moment of inertia of section (1) about the
Expression of moment of inertia of section (2) about the
Expression of moment of inertia of section (3) about the
Expression of moment of inertia of section (4) about the
Mass products of inertia
Here. Mass products of inertia is
Mass products of inertia
Here. Mass products of inertia is
Mass products of inertia
Here. Mass products of inertia is
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the mass moment of inertia of the wire with respect to
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the mass moment of inertia of the wire with respect to
Substitute
Substitute
Substitute
Substitute
Substitute
Product of inertia
Substitute
Substitute
Substitute
Mass moment of inertia of the machine component with respect to the axis through the origin by the unit vector is calculated as follows:
Conclusion:
The mass moment of inertia of the machine component with respect to the axis through the origin by the unit vector is
Want to see more full solutions like this?
Chapter B Solutions
Vector Mechanics For Engineers
- (b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q2: For the following figure, find the reactions of the system. The specific weight of the plate is 500 lb/ft³arrow_forwardQ1: For the following force system, find the moments with respect to axes x, y, and zarrow_forwardQ10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forward
- Help ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward
- (L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forwardIf L-719.01 mm, = 7839.63 N/m³, the normal stress σ caused by self-weight at the location of the maximum normal stress in the bar can be calculated as (Please select the correct value of σ given in Pa and rounded to three decimal places.) Select one: ○ 1. 1409.193 2. 845.516 O 3. 11273.545 ○ 4.8455.159 ○ 5.4509.418 6. 2818.386 7.5636.772arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY