
Concept explainers
(a)
The principal mass moment of inertia at the origin

Answer to Problem B.72P
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
Explanation of Solution
Given information:
The thin bent plate with uniform density, the weight of both the plates is
The figure below illustrate different centroidal axis.
Figure-(1)
Write the expression for the mass of plate 1.
Here, the weight of both the plates is
Write the expression for the mass of plate 2.
Here, the weight of both the plates is
Write the expression of position vector of the line joining
Here, the vector along the line joining the points
Write the expression for the magnitude of position vector
Here, the magnitude of the position vector
Write the expression for unit vector along
Here, the unit vector along
Write the expression of mass moment of inertia of section 1 about
Here, the mass moment of inertia of section 1 about
Write the expression of mass moment of inertia of section 2 about
Here, the mass moment of inertia of section 2 about
Write the expression of total mass moment of inertia about
Here, the total mass moment of inertia about
Write the expression of mass moment of inertia of section 1 about
Here, the mass moment of inertia of section 1 about
Write the expression of mass moment of inertia of section 2 about
Here, the mass moment of inertia of section 2 about
Write the expression of total mass moment of inertia about
Here, the total mass moment of inertia about
Write the expression of mass moment of inertia of section 1 about
Here, the mass moment of inertia of section 1 about
Write the expression of mass moment of inertia of section 2 about
Here, the mass moment of inertia of section 2 about
Write the expression of total mass moment of inertia about
Here, the total mass moment of inertia about
From, the symmetry in above figure about
Here, the product mass moment of inertia in
From, the symmetry in above figure about
Write the expression for product of mass moment of inertia in
Here, the product mass moment of inertia is
Write the expression for product mass moment of inertia in
Here, the product mass moment of inertia is
Write the expression for product mass moment of inertia in
Here, the product mass moment of inertia in
Write the expression of principal mass moment of inertia
Here, the principal moment of inertia is
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Solving above cubic Equation to get the values of
Conclusion:
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
(b)
The determine the orientation of principal axis at origin

Answer to Problem B.72P
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
Explanation of Solution
The figure below represents the orientation of principal axis with respect to the Cartesian coordinates.
Figure-(1)
Write the equation of direction cosines formed by principal axes 1.
Here, the principal mass moment of inertia about principal axis 1 is
Write the expression of orientation of direction cosine about principal axis 1 in
Here, the orientation of direction cosine about principal axis 1 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 1 in
Write the expression of orientation of direction cosine about principal axis 1 in
Here, the orientation of direction cosine about principal axis 1 in
Write the equation of direction cosines formed by principal axes 2.
Here, the principal mass moment of inertia about principal axis in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 2 is
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 2 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 2 in
Write the equation of direction cosines formed by principal axes 3.
Here, the principal mass moment of inertia about principal axis 3 is
Write the expression of orientation of direction cosine about principal axis 3 in
Here, the orientation of direction cosine about principal axis 3 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 3 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 3 in
Calculation:
Substitute
Substitute
Add Equation (XXXIX) and (XL).
Subtract Equation (XXXIX) and (XL).
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Add Equation (XLIV) and(XLV).
Subtract Equation (XLIV) and(XLV).
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Add Equation (XLIX) and (L).
Substract Equation (XLIX) and (L).
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
Want to see more full solutions like this?
Chapter B Solutions
Vector Mechanics For Engineers
- One end of a thin uniform rod of mass m and length 31 rests against a smooth vertical wall. The other end of the rod is attached by a string of length 1 to a fixed point O which is located a distance 21 from the wall. A horizontal force of magnitude F₁ is applied to the lower end of the rod as shown. Assuming the rod and the string remain in the same vertical plane perpendicular to the wall, find the angle 0 between the rod and the wall at the position of static equilibrium. Notes: This quiz is going to walk you through a sequence of steps to do this. It won't give you the answers, but it will hopefully get you to see how to approach problems like this so that you have a working reference/template in the future. This is actually a modified version of a problem from the textbook (6.3). Note that in that problem, is not actually given. It has been introduced for convenience as we move through solving the problem, and should not show up in the final answer. DO NOT DO PROBLEM 6.3. It is…arrow_forwardvarrow_forward13.64 The shaft shown in Sketch h transfers power between the two pulleys. The tension on the slack side (right pul- ley) is 30% of that on the tight side. The shaft rotates at 900 rpm and is supported uniformly by a radial ball bearing at points 0 and B. Select a pair of radial ball bear- ings with 99% reliability and 40,000 hr of life. Assume Eq. (13.83) can be used to account for lubricant clean- liness. All length dimensions are in millimeters. Ans. Cmin = 42,400 N.arrow_forward
- A 4 inch wide, 12 inch tall cross section beam is subjected to an internal shear of 5.5 kips. What is the maximum transverse shear stress in the beam in psi if this bending is about the x axis?arrow_forwardA Brayton cycle produces 14 MW with an inlet state of 17°C, 100 kPa, and a compression ratio of 16:1. The heat added in the combustion is 960 kJ/kg. 0.7 MW of heat transferred from the turbine to the environment. What are the highest temperature and the mass flow rate of air? Assume cold air properties.arrow_forward. A gas turbine with air enters the compressor at 300 K, 1 bar, and exits from the turbine at 750 K, 1 bar. The thermal efficiency of the cycle is 40.1% and the back work ratio (BWR) is 0.4. Find the pressure ratio of the cycle. Assume variable specific heat.arrow_forward
- A regenerative gas turbine power plant is shown in Fig. below. Air enters the compressor at 1 bar, 27°C with a mass flow rate of 0.562 kg/s and is compressed to 4 bar. The isentropic efficiency of the compressor is 80%, and the regenerator effectiveness is 90%. All the power developed by the high-pressure turbine is used to run the compressor. The low-pressure turbine provides the net power output. Each turbine has an isentropic efficiency of 87% and the temperature at the inlet to the highpressure turbine is 1200 K. Assume cold air properties, determine: a. The net power output, in kW. b. The thermal efficiency of the cycle.arrow_forwardFor tixed inlet state and exit pressure, use a cold-air standard analysis to show that the pressure ratio across the two compressor stages that gives nunimum work input is:=)) k/(k-1) when Ta Ti, where Ta is the temperature of the air entering the second stage compressor and Pi is the intercooler pressure. Put the suitable assumptionsarrow_forwardDerive the equation below ah ap ax 12μ ax, +( ah ap ay 12μ ay Where P P (x, y) is the oil film pressure. 1..ah 2 axarrow_forward
- Can you determine the eignevalues by hand?arrow_forwardMonthly exam 13 2021-2022 Power plant Time: 1.5 Hrs Q1. A The gas-turbine cycle shown in Fig. is used as an automotive engine. In the first turbine, the gas expands to pressure Ps, just low enough for this turbine to drive the compressor. The gas is then expanded through the second turbine connected to the drive wheels. The data for the engine are shown in the figure, and assume that all processes are ideal. Determine the intermediate pressure Ps, the net specific work output of the engine, and the mass flow rate through the engine. Find also the air temperature entering the burner T3 and the thermal efficiency of the engine. Exhaust Air intake Φ www Regenerator www Bumer Compressor Turbine Power turbine et 150 kW Wompressor P₁ = 100 kPa T₁ = 300 K PP₁ =60 P-100 kPa T₁ = 1600 K Q2. On the basis of a cold air-standard analysis, show that the thermal efficiency of an ideal regenerative gas turbine can be expressed as 77 = 1- where - () () гp is the compressor pressure ratio, and T₁ and…arrow_forwardI need to find m in R = mD from the image given. Do you really need to know what R and D is to find R. I was thinking geometrically we can find a relationship between R and D. D = R*cos(30). Then R = mD becomes m = R/D = 1/cos(30) = 1.1547. Is that correct?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





