![Precalculus: A Unit Circle Approach (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134433042/9780134433042_largeCoverImage.gif)
Sierpinski's triangle. A geometric figure known as Sierpinski’s triangle is constructed by starting with an equilateral triangle as in the figure. Assume that each side of the triangle has length 1. Inside the original triangle, draw a second triangle by connecting the midpoints of the sides of the original triangle. This divides the original triangle into four identical equilateral triangles Repeat the process by constructing equilateral triangles inside each of the three smaller blue triangles, again using the midpoints of the sides of the triangle as vertices. Continuing this process with each group of smaller triangles produces Sierpinski's triangle. Coloring each set of smaller triangles helps in following the construction. (Be sure to count blue as well as white triangles.)
- When a process is repeated over and over, each repetition is called an iteration How many triangles will the fourth iteration have?
- How many triangles will the fifth iteration have?
- Find a formula for the number of triangles in the nth iteration Use mathematical induction to prove that this formula is correct
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 9 Solutions
Precalculus: A Unit Circle Approach (3rd Edition)
- Find the point on the graph of the given function at which the slope of the tangent line is the given slope. 2 f(x)=8x²+4x-7; slope of the tangent line = -3arrow_forwardUse the product rule to find the derivative of the following. p(y) (y¹ + y²) (6y¯³-10y¯4)arrow_forwardplease dont use chat gptarrow_forward
- Find this expression in frequency domain in a expression y(t), in time, that is.arrow_forwardplease dont use chat gptarrow_forwardQuestion Given the graph of f(z) below, find the graph of the derivative of f(z). Select the correct answer below: ° 7-6-5-4-3 123 ° ° 2 -7-6-5-4-3- 123 -° 2-4 -°- °- -7-6-5-4-3-2-1 1 5 +arrow_forward
- Which of the functions shown below is differentiable at = 0? Select the correct answer below: -7-6-5-4- -6-5-4-3-21, -7-6-5-4-3-2 -7-6-5-4-3-2-1 2 4 5 6 -1arrow_forwardcorrect answer is Acould you please show me how to compute using the residue theoremarrow_forwardthe correct answer is A please explainarrow_forward
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
- Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168994/9781938168994_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285195698/9781285195698_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)