
Concept explainers
(a)
Interpretation:
For the reaction of 50.0 g of iron (II) oxide with 10.0 g of C, limiting reactant should be determined.
Concept Introduction:
The reaction in which the reactant is totally consumed when the reaction is completed is
known as limiting reactant.
(a)

Answer to Problem 5RQ
Iron (II) oxide is a limiting reactant.
Explanation of Solution
The given reaction is shown below:
Given information:
Mass of FeO = 50 g
Mass of C = 10 g
Molar mass of FeO = 72 gmol-1
Molar mass of C = 12 gmol-1
The calculation of moles is shown below:
According to the given reaction 1 mole of FeOreacts with ½ mole of C. Therefore, 0.69 moles of FeOwould react with 0.69/2 = 0.345 moles of C. But there are 0.69 moles of FeOthat means FeOwill get totally consumed in the reaction and thus, will act as a limiting reactant.
(b)
Interpretation:
For the reaction of 50.0 g of iron (II) oxide and 10.0 g of C, mass of each product should be determined.
Concept Introduction:
Mole is the amount of the substance that contains the same number of particles or atoms or molecules. Molar mass is defined as an average
(b)

Answer to Problem 5RQ
Mass of Fe product = 38.64 g
Mass of CO2 product = 15.18 g
Explanation of Solution
The given reaction is shown below:
Given information:
Mass of FeO = 50 g
Mass of C = 10 g
Molar mass of FeO = 72 gmol-1
Molar mass of C = 12 gmol-1
The calculation of mass is shown below:
Mass of Fe produced = molar mass × moles
= 56 gmol-1 0.69 mol
= 38.64 g
Mass of CO2 produced = molar mass × moles
= 44 gmol-1× 0.345 mol
= 15.18 g
(c)
Interpretation:
For 50.0 g of iron (II) oxide reacting with 10.0 g of C, mass of the leftover reactant should be determined.
Concept Introduction:
Mole is the amount of the substance that contains the same number of particles or atoms or molecules. Molar mass is defined as an average mass of atoms present in the chemical formula. It is the sum of the atomic masses of all the atoms present in the chemical formula of any compound.
(c)

Answer to Problem 5RQ
Mass of left over reactant is 5.82 g
Explanation of Solution
The given reaction is shown below:
Given information:
Mass of FeO = 50 g
Mass of C = 10 g
Molar mass of FeO = 72 gmol-1
Molar mass of C = 12 gmol-1
According to the given reaction 1 mole of FeOreacts with ½ mole of C. Therefore, 0.69 moles of FeOwould react with 0.69/2 = 0.345 moles of C and moles of C present is 0.83 mol.
According to the reaction; 2 mol of FeO forms 2 mol of Fe and 1 mol of CO2. Therefore; 0.69 moles of FeO will form 0.69 moles of Fe and 0.345 moles of CO2
But there are 0.69 moles of FeOthat means FeOwill get totally consumed in the reaction and thus, will act as a limiting reactant. So, in the reactant carbon will be leftover.
Left over moles of C = no. of moles of C initially − moles of C reached with FeO
= 0.83 − 0.345 mol
= 0.485 mol
The calculation of leftover reactant is shown below:
Mass of left-over C = moles × molar mass
= 0.485 mol × 12 gmol-1
= 5.82 g
Chapter 9 Solutions
World of Chemistry, 3rd edition
- A. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardCan I please get help with this.arrow_forward
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forwardPlease help me with identifying these.arrow_forwardCan I please get help with this?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





