Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9781259639272
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9.2, Problem 9.44P
To determine

Find the moment of inertia (I¯x) and (I¯y) of the area with respect to centroidal axes.

Expert Solution & Answer
Check Mark

Answer to Problem 9.44P

The moment of inertia (I¯x) and (I¯y) of the area are 18.13in.4_ and 4.51in.4_ respectively.

Explanation of Solution

Calculation:

Show the area with parts of the section as Figure 1.

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 9.2, Problem 9.44P

Calculate the centroid of the area as in Table 1.

SectionArea, A (in.2)(x¯) (in.)(y¯) (in.)

(Ax¯)

(in.3)

(Ay¯)

(in.3)

13.6×0.5=1.83.62=1.80.52=0.253.240.45
23.8×0.5=1.90.52=0.250.5+3.82=2.40.4754.56
31.3×1.0=1.31.32=0.650.5+3.8+12=4.80.8456.24
Total ()5.0  4.56011.25

Calculate the centroid of the area with respect to x axis (X¯) using the formula:

X¯=Ax¯A

Substitute 4.56in.3 for Ax¯ and 5in.2 for A.

X¯=4.565=0.912in.

Calculate the centroid of the area with respect to y axis (Y¯) using the formula:

Y¯=Ay¯A

Substitute 11.25in.3 for Ay¯ and 5in.2 for A.

Y¯=11.255=2.25in.

Consider the x axis.

Consider the section 1.

Calculate the moment of inertia of section 1 (I¯1) using the formula:

I¯1=3.6×0.5312=0.0375in.4

Calculate the centroid of section 1 (d1) from the centroid of entire section using the relation:

d1=Y¯y¯1

Substitute 2.25 in. for Y¯ and 0.25 in. for y¯1.

d1=2.250.25=2in.

Calculate the moment of inertia of section 1 (Ix)1 with respect to x axis using the formula:

(Ix)1=I¯1+A1d12

Substitute 0.0375in.4 for I¯1, 1.8in.2 for A1 and 2 in. for d1.

(Ix)1=0.0375in.4+[1.8×(2)2]=7.2375in.4

Consider the section 2.

Calculate the moment of inertia of section 2 (I¯2) using the formula:

I¯2=0.5×3.8312=2.2863in.4

Calculate the centroid of section 2 (d2) from the centroid of entire section using the relation:

d2=y¯2Y¯

Substitute 2.25 in. for Y¯ and 2.4 in. for y¯2.

d2=2.42.25=0.15in.

Calculate the moment of inertia of section 2 (Ix)2 with respect to x axis using the formula:

(Ix)2=I¯2+A2d22

Substitute 2.2863in.4 for I¯2, 1.9in.2 for A2 and 0.15 in. for d2.

(Ix)2=2.2863in.4+[1.9×(0.15)2]=2.3291in.4

Consider the section 3.

Calculate the moment of inertia of section 3 (I¯3) using the formula:

I¯3=1.3×1.0312=0.1083in.4

Calculate the centroid of section 3 (d3) from the centroid of entire section using the relation:

d3=y¯3Y¯

Substitute 2.25 in. for Y¯ and 4.8 in. for y¯3.

d3=4.82.25=2.55in.

Calculate the moment of inertia of section 3 (Ix)3 with respect to x axis using the formula:

(Ix)3=I¯3+A3d32

Substitute 0.1083in.4 for I¯3, 1.3in.2 for A3 and 2.55 in. for d3.

(Ix)3=0.1083in.4+[1.3×(2.55)2]=8.5616in.4

Calculate the moment of inertia of entire section (I¯x) with respect to x axis using the relation:

I¯x=(Ix)1+(Ix)2+(Ix)3

Substitute 7.2375in.4 for (Ix)1, 2.3291in.4 for (Ix)2 and 8.5616in.4 for (Ix)3.

I¯x=7.2375in.4+2.3291in.4+8.5616in.4=18.13in.4

Consider the y axis.

Consider the section 1.

Calculate the moment of inertia of section 1 (I¯1) using the formula:

I¯1=0.5×3.6312=1.944in.4

Calculate the centroid of section 1 (d1) from the centroid of entire section using the relation:

d1=x¯1X¯

Substitute 0.912 in. for X¯ and 1.8 in. for x¯1.

d1=1.80.912=0.888in.

Calculate the moment of inertia of section 1 (Iy)1 with respect to y axis using the formula:

(Iy)1=I¯1+A1d12

Substitute 1.944in.4 for I¯1, 1.8in.2 for A1 and 0.888 in. for d1.

(Iy)1=1.944in.4+[1.8×(0.888)2]=3.3634in.4

Consider the section 2.

Calculate the moment of inertia of section 2 (I¯2) using the formula:

I¯2=3.8×0.5312=0.0396in.4

Calculate the centroid of section 2 (d2) from the centroid of entire section using the relation:

d2=X¯x¯2

Substitute 0.912 in. for X¯ and 0.25 in. for x¯2.

d2=0.9120.25=0.662in.

Calculate the moment of inertia of section 2 (Iy)2 with respect to y axis using the formula:

(Iy)2=I¯2+A2d22

Substitute 0.0396in.4 for I¯2, 1.9in.2 for A2 and 0.662 in. for d2.

(Iy)2=0.0396in.4+[1.9×(0.662)2]=0.8723in.4

Consider the section 3.

Calculate the moment of inertia of section 3 (I¯3) using the formula:

I¯3=1.0×1.3312=0.1831in.4

Calculate the centroid of section 3 (d3) from the centroid of entire section using the relation:

d3=X¯x¯3

Substitute 0.912 in. for X¯ and 0.65 in. for x¯3.

d3=0.9120.65=0.262in.

Calculate the moment of inertia of section 3 (Iy)3 with respect to y axis using the formula:

(Iy)3=I¯3+A3d32

Substitute 0.1831in.4 for I¯3, 1.3in.2 for A3 and 0.262 in. for d3.

(Iy)3=0.1831in.4+[1.3×(0.262)2]=0.2723in.4

Calculate the moment of inertia of entire section (I¯y) with respect to y axis using the relation:

I¯y=(Iy)1+(Iy)2+(Iy)3

Substitute 3.3634in.4 for (Iy)1, 0.8723in.4 for (Iy)2 and 0.2723in.4 for (Iy)3.

I¯y=3.3634in.4+0.8723in.4+0.2723in.4=4.51in.4

Therefore, the moment of inertia (I¯x) and (I¯y) of the area are 18.13in.4_ and 4.51in.4_ respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.
please help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoa
Solve this problem and show all of the work

Chapter 9 Solutions

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics

Ch. 9.1 - Prob. 9.11PCh. 9.1 - Prob. 9.12PCh. 9.1 - Prob. 9.13PCh. 9.1 - 9.12 through 9.14 Determine by direct integration...Ch. 9.1 - Prob. 9.15PCh. 9.1 - Prob. 9.16PCh. 9.1 - Prob. 9.17PCh. 9.1 - Prob. 9.18PCh. 9.1 - Prob. 9.19PCh. 9.1 - Prob. 9.20PCh. 9.1 - Prob. 9.21PCh. 9.1 - Prob. 9.22PCh. 9.1 - Prob. 9.23PCh. 9.1 - 9.23 and 9.24 Determine the polar moment of...Ch. 9.1 - Prob. 9.25PCh. 9.1 - Prob. 9.26PCh. 9.1 - Prob. 9.27PCh. 9.1 - Prob. 9.28PCh. 9.1 - Prob. 9.29PCh. 9.1 - Prove that the centroidal polar moment of inertia...Ch. 9.2 - Prob. 9.31PCh. 9.2 - Prob. 9.32PCh. 9.2 - Prob. 9.33PCh. 9.2 - Prob. 9.34PCh. 9.2 - Prob. 9.35PCh. 9.2 - Prob. 9.36PCh. 9.2 - Prob. 9.37PCh. 9.2 - Prob. 9.38PCh. 9.2 - Prob. 9.39PCh. 9.2 - Prob. 9.40PCh. 9.2 - Prob. 9.41PCh. 9.2 - 9.41 through 9.44 Determine the moments of inertia...Ch. 9.2 - Prob. 9.43PCh. 9.2 - Prob. 9.44PCh. 9.2 - 9.45 and 9.46 Determine the polar moment of...Ch. 9.2 - Prob. 9.46PCh. 9.2 - Prob. 9.47PCh. 9.2 - 9.47 and 9.48 Determine the polar moment of...Ch. 9.2 - 9.49 Two channels and two plates are used to form...Ch. 9.2 - Prob. 9.50PCh. 9.2 - Prob. 9.51PCh. 9.2 - Two 20-mm steel plates are welded to a rolled S...Ch. 9.2 - A channel and a plate are welded together as shown...Ch. 9.2 - Prob. 9.54PCh. 9.2 - Two L76 76 6.4-mm angles are welded to a C250 ...Ch. 9.2 - Prob. 9.56PCh. 9.2 - Prob. 9.57PCh. 9.2 - 9.57 and 9.58 The panel shown forms the end of a...Ch. 9.2 - Prob. 9.59PCh. 9.2 - 9.60 The panel shown forms the end of a trough...Ch. 9.2 - Prob. 9.61PCh. 9.2 - Prob. 9.62PCh. 9.2 - Prob. 9.63PCh. 9.2 - Prob. 9.64PCh. 9.2 - Prob. 9.65PCh. 9.2 - Prob. 9.66PCh. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - Prob. 9.68PCh. 9.3 - Prob. 9.69PCh. 9.3 - Prob. 9.70PCh. 9.3 - Prob. 9.71PCh. 9.3 - Prob. 9.72PCh. 9.3 - Prob. 9.73PCh. 9.3 - 9.71 through 9.74 Using the parallel-axis theorem,...Ch. 9.3 - Prob. 9.75PCh. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - Prob. 9.77PCh. 9.3 - Prob. 9.78PCh. 9.3 - Determine for the quarter ellipse of Prob. 9.67...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Prob. 9.85PCh. 9.3 - 9.86 through 9.88 For the area indicated,...Ch. 9.3 - Prob. 9.87PCh. 9.3 - Prob. 9.88PCh. 9.3 - Prob. 9.89PCh. 9.3 - 9.89 and 9.90 For the angle cross section...Ch. 9.4 - Using Mohrs circle, determine for the quarter...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Prob. 9.93PCh. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - For the quarter ellipse of Prob. 9.67, use Mohrs...Ch. 9.4 - 9.98 though 9.102 Using Mohrs circle, determine...Ch. 9.4 - Prob. 9.99PCh. 9.4 - 9.98 though 9.102 Using Mohrs circle, determine...Ch. 9.4 - Prob. 9.101PCh. 9.4 - Prob. 9.102PCh. 9.4 - Prob. 9.103PCh. 9.4 - 9.104 and 9.105 Using Mohrs circle, determine the...Ch. 9.4 - 9.104 and 9.105 Using Mohrs circle, determine the...Ch. 9.4 - For a given area, the moments of inertia with...Ch. 9.4 - it is known that for a given area Iy = 48 106 mm4...Ch. 9.4 - Prob. 9.108PCh. 9.4 - Prob. 9.109PCh. 9.4 - Prob. 9.110PCh. 9.5 - A thin plate with a mass m is cut in the shape of...Ch. 9.5 - A ring with a mass m is cut from a thin uniform...Ch. 9.5 - Prob. 9.113PCh. 9.5 - The parabolic spandrel shown was cut from a thin,...Ch. 9.5 - Prob. 9.115PCh. 9.5 - Fig. P9.115 and P9.116 9.116 A piece of thin,...Ch. 9.5 - 9.117 A thin plate with a mass m has the...Ch. 9.5 - Prob. 9.118PCh. 9.5 - 9.119 Determine by direct integration the mass...Ch. 9.5 - The area shown is revolved about the x axis to...Ch. 9.5 - 9.121 The area shown is revolved about the x axis...Ch. 9.5 - Prob. 9.122PCh. 9.5 - Prob. 9.123PCh. 9.5 - Prob. 9.124PCh. 9.5 - Prob. 9.125PCh. 9.5 - Prob. 9.126PCh. 9.5 - Prob. 9.127PCh. 9.5 - Prob. 9.128PCh. 9.5 - Prob. 9.129PCh. 9.5 - Prob. 9.130PCh. 9.5 - Prob. 9.131PCh. 9.5 - The cups and the arms of an anemometer are...Ch. 9.5 - Prob. 9.133PCh. 9.5 - Determine the mass moment of inertia of the 0.9-lb...Ch. 9.5 - Prob. 9.135PCh. 9.5 - Prob. 9.136PCh. 9.5 - Prob. 9.137PCh. 9.5 - A section of sheet steel 0.03 in. thick is cut and...Ch. 9.5 - Prob. 9.139PCh. 9.5 - A farmer constructs a trough by welding a...Ch. 9.5 - The machine element shown is fabricated from...Ch. 9.5 - Determine the mass moments of inertia and the...Ch. 9.5 - Determine the mass moment of inertia of the steel...Ch. 9.5 - Prob. 9.144PCh. 9.5 - Determine the mass moment of inertia of the steel...Ch. 9.5 - Aluminum wire with a weight per unit length of...Ch. 9.5 - The figure shown is formed of 18-in.-diameter...Ch. 9.5 - A homogeneous wire with a mass per unit length of...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Prob. 9.151PCh. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - 9.153 through 9.156 A section of sheet steel 2 mm...Ch. 9.6 - Prob. 9.154PCh. 9.6 - Prob. 9.155PCh. 9.6 - 9.153 through 9.156 A section of sheet steel 2 mm...Ch. 9.6 - Prob. 9.157PCh. 9.6 - Prob. 9.158PCh. 9.6 - Prob. 9.159PCh. 9.6 - Prob. 9.160PCh. 9.6 - Prob. 9.161PCh. 9.6 - For the homogeneous tetrahedron of mass m shown,...Ch. 9.6 - Prob. 9.163PCh. 9.6 - Prob. 9.164PCh. 9.6 - Prob. 9.165PCh. 9.6 - Determine the mass moment of inertia of the steel...Ch. 9.6 - Prob. 9.167PCh. 9.6 - Prob. 9.168PCh. 9.6 - Prob. 9.169PCh. 9.6 - 9.170 through 9.172 For the wire figure of the...Ch. 9.6 - Prob. 9.171PCh. 9.6 - Prob. 9.172PCh. 9.6 - Prob. 9.173PCh. 9.6 - Prob. 9.174PCh. 9.6 - Prob. 9.175PCh. 9.6 - Prob. 9.176PCh. 9.6 - Prob. 9.177PCh. 9.6 - Prob. 9.178PCh. 9.6 - Prob. 9.179PCh. 9.6 - Prob. 9.180PCh. 9.6 - Prob. 9.181PCh. 9.6 - Prob. 9.182PCh. 9.6 - Prob. 9.183PCh. 9.6 - Prob. 9.184PCh. 9 - Determine by direct integration the moments of...Ch. 9 - Determine the moment of inertia and the radius of...Ch. 9 - Prob. 9.187RPCh. 9 - Prob. 9.188RPCh. 9 - Prob. 9.189RPCh. 9 - Two L4 4 12-in. angles are welded to a steel...Ch. 9 - Prob. 9.191RPCh. 9 - Prob. 9.192RPCh. 9 - Prob. 9.193RPCh. 9 - Prob. 9.194RPCh. 9 - Prob. 9.195RPCh. 9 - Determine the mass moment of inertia of the steel...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY