Find the moment and product of inertia of the area with respect to x and y axes about through
Answer to Problem 9.192RP
The moment of inertia of the area with respect to x about through
The moment of inertia of the area with respect to y about through
The product of inertia of the area with respect to x and y axes about through
Explanation of Solution
Sketch the cross section as shown in Figure 1.
Refer to Figure 9.13.
The moment of inertia
The moment of inertia
Refer to Problem 9.191.
Sketch the cross section as shown in Figure 2.
Express the product of inertia as shown below:
Here,
Applying parallel axis theorem,
When the x and y axis is symmetry.
Refer to Figure 1.
Find the area of semicircle section 1 as shown below:
Here,
Substitute
Find the area of rectangle section 2 as shown below:
Here,
Substitute
Find the centroid for section 1 about x axis
Find the centroid for section 1 about x axis
Find the centroid for section 1 about y axis
Find the centroid for section 2 about x axis
Find the product of inertia of the area with respect to x and y axes by using parallel axis theorem as shown below:
Substitute
The Mohr circle is defined by the diameter XY, where
Find the average moment of inertia
Here,
Substitute
Find the radius (R) using the relation as shown below:
Here, R is radius and
Substitute
Sketch the Mohr circle as shown in Figure 3.
Refer to Figure 2.
Substitute
Find the angle
Find the moment of inertia of the area with respect to x about through
Here,
Substitute
Thus, the moment of inertia of the area with respect to x about through
Find the moment of inertia of the area with respect to y about through
Substitute
Thus, the moment of inertia of the area with respect to y about through
Find the product of inertia of the area with respect to y about through
Substitute
Thus, the product of inertia of the area with respect to x and y axes about through
(b)
Find the orientation of the principal axes through the centroid and corresponding values.
(b)
Answer to Problem 9.192RP
The orientation of the principal axes at the origin is
The maximum moment of inertia is
The minimum moment of inertia is
Explanation of Solution
Calculation:
Find the orientation of the principal axes through at origin as shown below.
Refer part a.
Thus, the orientation of the principal axes at the origin is
Sketch the orientation axis as shown in Figure 4.
Find the maximum moment
Substitute
Thus, the maximum moment of inertia is
Find the minimum moment
Substitute
Thus, the minimum moment of inertia is
Want to see more full solutions like this?
Chapter 9 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- To form a reinforced box section, two rolled W'sections and two plates are welded together. Determine the moments of inertia and the radii of gyration of the combined section with respect to the centroidal axes shown. Consider w= 6.25 mm. nces Mc Graw Hill W200 x 46.1 The moment of inertia I is The radii of gyration k is The moment of inertia I, is [ The radii of gyration ky is esc 203 mm- Spring 23 Q x 106 mm4. X mm. x 106 mm4. mm. $ % Check my wal MacBook Pro <( A G &arrow_forwardProblem 09.086 - Orientation of the principal axes and the corresponding moments of inertia For the area indicated, determine the orientation of the principal axes at the origin and the corresponding values of the moments of inertia when b= 76 mm and h = 56 mm. b The value of mis The value of 0m2 is The value of Imax is The value of I min is 180 270 1.429 7292 × h x 106 mm4. 106 mm4arrow_forwardDetermine the moments of inertia and the product of inertia of the L3 x 2 x 1/4-14 angle cross section of Prob. 9.74 with respect to new centroidal axes obtained by rotating the x and y axes 30° clockwise.(Reference to Problem 9.75):Using the parallel-axis theorem, determine the product of inertia of the area shown with respect to the centroidal x and y axes.arrow_forward
- To form a reinforced box section, two rolled W sections and two plates are welded together. Determine the moments of inertia and the radii of gyration of the combined section with respect to the centroidal axes shown. Consider w= 6.25 mm. W200 × 46.1 203 mm The moment of inertia I is 106 mm4. The radii of gyration kx is mm. The moment of inertia I, is 106 mm4. The radii of gyration ky is mm.arrow_forward7..arrow_forwardFor the section shown, the moments and product of inertia with respect to the x and y axes areIx = 7.20 × 106 mm4Iy = 2.59 × 106 mm4Ixy = − 2.54 × 106 mm4Using Mohr’s circle, determine a. the principal axes of the section about O,b. the values of the principal moments of inertia of the section about O.arrow_forward
- Considering L = 50 + a + 2·b + c {mm}, determine the centroidal coordinate Ycg (location of the x´ axis of the centroid) and the moment of inertia is relative to the X´ axis (IX' , ). Assume a minimum precision of 6 significant figures and present the results of the moments of inertia in scientific notation (1.23456·10n ). (Knowing that a=7, b=1, and c=1.) Ycg = IX, =arrow_forwardQ. 1 Determine the moment of Inertia about given x and y axis in the following figure if a = 10 mm. %3D 2aarrow_forwardDetermine the moments of inertia about the centroidal x-axes of the trapezoidal area. a=147 mm; b=294 mm; h=441 mm. Answer the question in mm4. Yanıt: b b Yanıt: Answer the question in mm4. h Determine the moments of inertia about the centroidal y-axes of the trapezoidal area. X Warrow_forward
- Four L3 × 3 × 늪 -in. angles are welded to a rolled W section as shown. Determine the moments of inertia and the radii of gyration of the combined section with respect to the centroidal x and y axes if a = 5.5 in. - L 3X3 X W 8 X 31 The moment of inertia with respect to the x axis is The radius of gyration with respect to the x axis is The moment of inertia with respect to the y axis is The radius of gyration with respect to the yaxis is 4 int. in. lin4. in.arrow_forwardTwo L6 × 4 × 1/2-in. angles are welded together to form the section shown. Determine the moments of inertia and the radii of gyration of the combined section with respect to the centroidal x and y axes.arrow_forwardPlease help me answer the following, thanks.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY