
Concept explainers
Find the moment of inertia of the shaded area with respect to x axis

Answer to Problem 9.36P
The moment of inertia of the shaded area with respect to x axis
Explanation of Solution
Show the centroidal location of the given section as Figure 1.
Consider x axis.
Consider the section 1.
Calculate the moment of inertia of the section 1
The expression for the area of the section 1 (A) as follows;
The expression for the centroid of the section 1 (d) as follows;
Calculate the moment of inertia of the section 1
Substitute
The expression for the moment of inertia of the section AA
The section AA and BB compressed of semi-circle.
The expression for the area of the semi-circle (A) as follows;
The expression for the centroid of the semi-circle (d) as follows;
Calculate the moment of inertia of the section 2
Since both sections (2) and (3) are semi-circle which has same moment of inertia.
Substitute
Consider the section 2.
The expression for the centroid of the section 2 (d) from neutral axis as follows;
Calculate the moment of inertia of the section 2
Substitute
Consider the section 3.
The expression for the centroid of the section 3 (d) from neutral axis as follows;
Calculate the moment of inertia of the section 3
Substitute
Calculate the total moment of inertia of the entire section
Substitute
Consider y axis.
Consider the section 1.
Calculate the moment of inertia of the section 1
The expression for the area of the section 1 (A) as follows;
The expression for the centroid of the section 1 (d) as follows;
Calculate the moment of inertia of the section 1
Substitute
Consider the section 2.
Calculate the moment of inertia of the section 2
Substitute
The expression for the area of the semi-circle (A) as follows;
The expression for the centroid of the semi-circle (d) as follows;
Calculate the moment of inertia of the section 1
Substitute
Since the section 2 and section 3 are same. Hence,
Calculate the total moment of inertia of the entire section
Substitute
Therefore, the moment of inertia of the shaded area with respect to x axis
Want to see more full solutions like this?
Chapter 9 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- A mass of ideal gas in a closed piston-cylinder system expands from 427 °C and 16 bar following the process law, pv1.36 = Constant (p times v to the power of 1.36 equals to a constant). For the gas, initial : final pressure ratio is 4:1 and the initial gas volume is 0.14 m³. The specific heat of the gas at constant pressure, Cp = 0.987 kJ/kg-K and the specific gas constant, R = 0.267 kJ/kg.K. Determine the change in total internal energy in the gas during the expansion. Enter your numerical answer in the answer box below in KILO JOULES (not in Joules) but do not enter the units. (There is no expected number of decimal points or significant figures).arrow_forwardmy ID# 016948724. Please solve this problem step by steparrow_forwardMy ID# 016948724 please find the forces for Fx=0: fy=0: fz=0: please help me to solve this problem step by steparrow_forward
- My ID# 016948724 please solve the proble step by step find the forces fx=o: fy=0; fz=0; and find shear moment and the bending moment diagran please draw the diagram for the shear and bending momentarrow_forwardMy ID#016948724. Please help me to find the moment of inertia lx ly are a please show to solve step by stepsarrow_forwardplease solve this problem step by steparrow_forward
- Please do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





