Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9781259639272
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9.2, Problem 9.36P
To determine

Find the moment of inertia of the shaded area with respect to x axis (Ix) and y axis (Iy).

Expert Solution & Answer
Check Mark

Answer to Problem 9.36P

The moment of inertia of the shaded area with respect to x axis (Ix) and y axis (Iy) are 69.9a4_ and 72a4_ respectively.

Explanation of Solution

Show the centroidal location of the given section as Figure 1.

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 9.2, Problem 9.36P

Consider x axis.

Consider the section 1.

Calculate the moment of inertia of the section 1 (I¯x1)1 using the formula:

(I¯x1)1=4a×(4a)312=256a412

The expression for the area of the section 1 (A) as follows;

A=4a×4a=16a2

The expression for the centroid of the section 1 (d) as follows;

d=4a2=2a

Calculate the moment of inertia of the section 1 (Ix)1 using the formula:

(Ix)1=(I¯x1)1+Ad2

Substitute 256a412 for (I¯x1)1 and 16a2 for A and 2a for d.

(Ix)1=256a412+16a2(2a)2=256a412+64a4=a4(25612+64)=256a43

The expression for the moment of inertia of the section AA (IAA)2 and section BB (IBB)3 as follows;

The section AA and BB compressed of semi-circle.

(IAA)2=(IBB)3=π8a4

The expression for the area of the semi-circle (A) as follows;

A=π2a2

The expression for the centroid of the semi-circle (d) as follows;

d=4a3π

Calculate the moment of inertia of the section 2 (I¯x2)2 and section 3 (I¯x3)3 using the formula:

Since both sections (2) and (3) are semi-circle which has same moment of inertia.

(IAA)2=(I¯x2)2+Ad2(I¯x3)3=(I¯x2)2=(IAA)2Ad2

Substitute π8a4 for (IAA)2, π2a2 for A and 4a3π for d.

(I¯x3)3=(I¯x2)2=π8a4π2a2(4a3π)2=π8a4πa22(16a29π2)=π8a48a49π=a4(π889π)

Consider the section 2.

The expression for the centroid of the section 2 (d) from neutral axis as follows;

d=52a+4a3π

Calculate the moment of inertia of the section 2 (Ix)2 using the formula:

(Ix)2=(I¯x2)2+Ad2

Substitute a4(π889π) for (I¯x2)2, π2a2 for A and (52a+4a3π) for d.

(Ix)2=a4(π889π)+[π2a2(52a+4a3π)2]=a4(π889π)+π2a2((52a)2+(4a3π)2+2(5a2)4a3π)=a4(103+13π4)

Consider the section 3.

The expression for the centroid of the section 3 (d) from neutral axis as follows;

d=32a4a3π

Calculate the moment of inertia of the section 3 (Ix)3 using the formula:

(Ix)3=(I¯x3)3+Ad2

Substitute a4(π889π) for (I¯x3)3, π2a2 for A and (32a4a3π) for d.

(Ix)3=a4(π889π)+[π2a2(32a4a3π)2]=a4(π889π)+π2a2((32a)2+(4a3π)22(32a)4a3π)=a4(2+5π4)

Calculate the total moment of inertia of the entire section (Ix) about x axis using the relation:

Ix=(Ix)1(Ix)2(Ix)3

Substitute 2563a4 for (Ix)1, a4(103+13π4) for (Ix)2 and a4(2+5π4) for (Ix)3.

Ix=2563a4a4(103+13π4)a4(2+5π4)=2563a410a4313a4π4+2a45a4π4=168a49πa42=69.9a4

Consider y axis.

Consider the section 1.

Calculate the moment of inertia of the section 1 (I¯y1)1 about y axis using the formula:

(I¯y1)1=4a×(4a)312=256a412

The expression for the area of the section 1 (A) as follows;

A=4a×4a=16a2

The expression for the centroid of the section 1 (d) as follows;

d=4a2=2a

Calculate the moment of inertia of the section 1 (Iy)1 using the formula:

(Iy)1=(I¯y1)1+Ad2

Substitute 256a412 for (I¯y1)1 and 16a2 for A and 2a for d.

(Iy)1=256a412+16a2(2a)2=256a412+64a4=a4(25612+64)=256a43

Consider the section 2.

Calculate the moment of inertia of the section 2 (I¯y2)2 about y axis using the relation:

(I¯y2)2=(IAA)2

Substitute π8a4 for (IAA)2.

(I¯y2)2=π8a4

The expression for the area of the semi-circle (A) as follows;

A=π2a2

The expression for the centroid of the semi-circle (d) as follows;

d=4a2=2a

Calculate the moment of inertia of the section 1 (Iy)1 using the formula:

(Iy)2=(I¯y2)2+Ad2

Substitute π8a4 for (I¯y2)2 and π2a2 for A and 2a for d.

(Iy)2=π8a4+π2a2(2a)2=π8a4+2πa4=17πa48

Since the section 2 and section 3 are same. Hence, (Iy)3=(Iy)2=17πa48.

Calculate the total moment of inertia of the entire section (Iy) about y axis using the relation:

Iy=(Iy)1(Iy)2(Iy)3

Substitute 256a43 for (Iy)1 and 17πa48 for (Iy)2 and 17πa48 for (Iy)3.

Iy=256a4317πa4817πa48=256a432(17πa48)=a4(256317π4)=72a4

Therefore, the moment of inertia of the shaded area with respect to x axis (Ix) and y axis (Iy) are 69.9a4_ and 72a4_ respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 9 Solutions

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics

Ch. 9.1 - Prob. 9.11PCh. 9.1 - Prob. 9.12PCh. 9.1 - Prob. 9.13PCh. 9.1 - 9.12 through 9.14 Determine by direct integration...Ch. 9.1 - Prob. 9.15PCh. 9.1 - Prob. 9.16PCh. 9.1 - Prob. 9.17PCh. 9.1 - Prob. 9.18PCh. 9.1 - Prob. 9.19PCh. 9.1 - Prob. 9.20PCh. 9.1 - Prob. 9.21PCh. 9.1 - Prob. 9.22PCh. 9.1 - Prob. 9.23PCh. 9.1 - 9.23 and 9.24 Determine the polar moment of...Ch. 9.1 - Prob. 9.25PCh. 9.1 - Prob. 9.26PCh. 9.1 - Prob. 9.27PCh. 9.1 - Prob. 9.28PCh. 9.1 - Prob. 9.29PCh. 9.1 - Prove that the centroidal polar moment of inertia...Ch. 9.2 - Prob. 9.31PCh. 9.2 - Prob. 9.32PCh. 9.2 - Prob. 9.33PCh. 9.2 - Prob. 9.34PCh. 9.2 - Prob. 9.35PCh. 9.2 - Prob. 9.36PCh. 9.2 - Prob. 9.37PCh. 9.2 - Prob. 9.38PCh. 9.2 - Prob. 9.39PCh. 9.2 - Prob. 9.40PCh. 9.2 - Prob. 9.41PCh. 9.2 - 9.41 through 9.44 Determine the moments of inertia...Ch. 9.2 - Prob. 9.43PCh. 9.2 - Prob. 9.44PCh. 9.2 - 9.45 and 9.46 Determine the polar moment of...Ch. 9.2 - Prob. 9.46PCh. 9.2 - Prob. 9.47PCh. 9.2 - 9.47 and 9.48 Determine the polar moment of...Ch. 9.2 - 9.49 Two channels and two plates are used to form...Ch. 9.2 - Prob. 9.50PCh. 9.2 - Prob. 9.51PCh. 9.2 - Two 20-mm steel plates are welded to a rolled S...Ch. 9.2 - A channel and a plate are welded together as shown...Ch. 9.2 - Prob. 9.54PCh. 9.2 - Two L76 76 6.4-mm angles are welded to a C250 ...Ch. 9.2 - Prob. 9.56PCh. 9.2 - Prob. 9.57PCh. 9.2 - 9.57 and 9.58 The panel shown forms the end of a...Ch. 9.2 - Prob. 9.59PCh. 9.2 - 9.60 The panel shown forms the end of a trough...Ch. 9.2 - Prob. 9.61PCh. 9.2 - Prob. 9.62PCh. 9.2 - Prob. 9.63PCh. 9.2 - Prob. 9.64PCh. 9.2 - Prob. 9.65PCh. 9.2 - Prob. 9.66PCh. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - Prob. 9.68PCh. 9.3 - Prob. 9.69PCh. 9.3 - Prob. 9.70PCh. 9.3 - Prob. 9.71PCh. 9.3 - Prob. 9.72PCh. 9.3 - Prob. 9.73PCh. 9.3 - 9.71 through 9.74 Using the parallel-axis theorem,...Ch. 9.3 - Prob. 9.75PCh. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - Prob. 9.77PCh. 9.3 - Prob. 9.78PCh. 9.3 - Determine for the quarter ellipse of Prob. 9.67...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Prob. 9.85PCh. 9.3 - 9.86 through 9.88 For the area indicated,...Ch. 9.3 - Prob. 9.87PCh. 9.3 - Prob. 9.88PCh. 9.3 - Prob. 9.89PCh. 9.3 - 9.89 and 9.90 For the angle cross section...Ch. 9.4 - Using Mohrs circle, determine for the quarter...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Prob. 9.93PCh. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - For the quarter ellipse of Prob. 9.67, use Mohrs...Ch. 9.4 - 9.98 though 9.102 Using Mohrs circle, determine...Ch. 9.4 - Prob. 9.99PCh. 9.4 - 9.98 though 9.102 Using Mohrs circle, determine...Ch. 9.4 - Prob. 9.101PCh. 9.4 - Prob. 9.102PCh. 9.4 - Prob. 9.103PCh. 9.4 - 9.104 and 9.105 Using Mohrs circle, determine the...Ch. 9.4 - 9.104 and 9.105 Using Mohrs circle, determine the...Ch. 9.4 - For a given area, the moments of inertia with...Ch. 9.4 - it is known that for a given area Iy = 48 106 mm4...Ch. 9.4 - Prob. 9.108PCh. 9.4 - Prob. 9.109PCh. 9.4 - Prob. 9.110PCh. 9.5 - A thin plate with a mass m is cut in the shape of...Ch. 9.5 - A ring with a mass m is cut from a thin uniform...Ch. 9.5 - Prob. 9.113PCh. 9.5 - The parabolic spandrel shown was cut from a thin,...Ch. 9.5 - Prob. 9.115PCh. 9.5 - Fig. P9.115 and P9.116 9.116 A piece of thin,...Ch. 9.5 - 9.117 A thin plate with a mass m has the...Ch. 9.5 - Prob. 9.118PCh. 9.5 - 9.119 Determine by direct integration the mass...Ch. 9.5 - The area shown is revolved about the x axis to...Ch. 9.5 - 9.121 The area shown is revolved about the x axis...Ch. 9.5 - Prob. 9.122PCh. 9.5 - Prob. 9.123PCh. 9.5 - Prob. 9.124PCh. 9.5 - Prob. 9.125PCh. 9.5 - Prob. 9.126PCh. 9.5 - Prob. 9.127PCh. 9.5 - Prob. 9.128PCh. 9.5 - Prob. 9.129PCh. 9.5 - Prob. 9.130PCh. 9.5 - Prob. 9.131PCh. 9.5 - The cups and the arms of an anemometer are...Ch. 9.5 - Prob. 9.133PCh. 9.5 - Determine the mass moment of inertia of the 0.9-lb...Ch. 9.5 - Prob. 9.135PCh. 9.5 - Prob. 9.136PCh. 9.5 - Prob. 9.137PCh. 9.5 - A section of sheet steel 0.03 in. thick is cut and...Ch. 9.5 - Prob. 9.139PCh. 9.5 - A farmer constructs a trough by welding a...Ch. 9.5 - The machine element shown is fabricated from...Ch. 9.5 - Determine the mass moments of inertia and the...Ch. 9.5 - Determine the mass moment of inertia of the steel...Ch. 9.5 - Prob. 9.144PCh. 9.5 - Determine the mass moment of inertia of the steel...Ch. 9.5 - Aluminum wire with a weight per unit length of...Ch. 9.5 - The figure shown is formed of 18-in.-diameter...Ch. 9.5 - A homogeneous wire with a mass per unit length of...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Prob. 9.151PCh. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - 9.153 through 9.156 A section of sheet steel 2 mm...Ch. 9.6 - Prob. 9.154PCh. 9.6 - Prob. 9.155PCh. 9.6 - 9.153 through 9.156 A section of sheet steel 2 mm...Ch. 9.6 - Prob. 9.157PCh. 9.6 - Prob. 9.158PCh. 9.6 - Prob. 9.159PCh. 9.6 - Prob. 9.160PCh. 9.6 - Prob. 9.161PCh. 9.6 - For the homogeneous tetrahedron of mass m shown,...Ch. 9.6 - Prob. 9.163PCh. 9.6 - Prob. 9.164PCh. 9.6 - Prob. 9.165PCh. 9.6 - Determine the mass moment of inertia of the steel...Ch. 9.6 - Prob. 9.167PCh. 9.6 - Prob. 9.168PCh. 9.6 - Prob. 9.169PCh. 9.6 - 9.170 through 9.172 For the wire figure of the...Ch. 9.6 - Prob. 9.171PCh. 9.6 - Prob. 9.172PCh. 9.6 - Prob. 9.173PCh. 9.6 - Prob. 9.174PCh. 9.6 - Prob. 9.175PCh. 9.6 - Prob. 9.176PCh. 9.6 - Prob. 9.177PCh. 9.6 - Prob. 9.178PCh. 9.6 - Prob. 9.179PCh. 9.6 - Prob. 9.180PCh. 9.6 - Prob. 9.181PCh. 9.6 - Prob. 9.182PCh. 9.6 - Prob. 9.183PCh. 9.6 - Prob. 9.184PCh. 9 - Determine by direct integration the moments of...Ch. 9 - Determine the moment of inertia and the radius of...Ch. 9 - Prob. 9.187RPCh. 9 - Prob. 9.188RPCh. 9 - Prob. 9.189RPCh. 9 - Two L4 4 12-in. angles are welded to a steel...Ch. 9 - Prob. 9.191RPCh. 9 - Prob. 9.192RPCh. 9 - Prob. 9.193RPCh. 9 - Prob. 9.194RPCh. 9 - Prob. 9.195RPCh. 9 - Determine the mass moment of inertia of the steel...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY