FINITE MATH.F/MGRL....(LL)>CUSTOM PKG.<
11th Edition
ISBN: 9781337496094
Author: Tan
Publisher: CENGAGE C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.2, Problem 29E
To determine
To show:
The steady-state distribution vector
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An improved method that is similar to Euler's method is what is usually called the Improved
Euler's method. It works like this:
Consider an equation y' = f(x, y). From (xn, Yn), our approximation to the solution of the
differential equation at the n-th stage, we find the next stage by computing the x-step
Xn+1 = xn +h, and then k1, the slope at (xn, Yn). The predicted new value of the solution
.
İs Zn+1 = Yn + h · k₁. Then we find the slope at the predicted new point
k₁ = f(xn+1, Zn+1) and get the corrected point by averaging slopes
h
Yn+1 = = Yn +
1½ ½
(k1 + k₂).
Suppose that we use the Improved Euler's method to approximate the solution to the
differential equation
dy
dx
= x - 0.5y,
y(0.5) = 9.
We let xo =
0.5 and yo 9 and pick a step size h = 0.25.
Complete the following table:
n xn Yn k1 Zn+1 k₂
0 0.59-48
-3.25
♡
<+
help (numbers)
The exact solution can also be found for the linear equation. Write the answer as a function
of x.
y(x) =
=
help (formulas)
Thus the actual value of the…
Already got wrong Chatgpt answer
If ur also Chatgpt user leave it
The graph of the function f(x) is
1,0
(the horizontal axis is x.)
Consider the differential equation x' = f(x).
List the constant (or equilibrium) solutions to this differential equation in increasing order
and indicate whether or not these equalibria are stable, semi-stable (stable from one side,
unstable from the other), or unstable.
x =
help (numbers)
x =
help (numbers)
x =
help (numbers)
x =
help (numbers)
Book: Section 1.6 of Notes on Diffy Qs
Chapter 9 Solutions
FINITE MATH.F/MGRL....(LL)>CUSTOM PKG.<
Ch. 9.1 - What is a finite stochastic process? What can you...Ch. 9.1 - Prob. 2CQCh. 9.1 - Consider a transition matrix T for a Markov chain...Ch. 9.1 - Prob. 1ECh. 9.1 - Prob. 2ECh. 9.1 - Prob. 3ECh. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Prob. 6ECh. 9.1 - Prob. 7E
Ch. 9.1 - Prob. 8ECh. 9.1 - Prob. 9ECh. 9.1 - In Exercises 1-10, determine which of the matrices...Ch. 9.1 - Prob. 11ECh. 9.1 - Prob. 12ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - In Exercises 1518, find X2 the probability...Ch. 9.1 - Prob. 17ECh. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - Prob. 20ECh. 9.1 - Political Polls: Morris Polling conducted a poll 6...Ch. 9.1 - Commuter Trends: In a large metropolitan area, 20...Ch. 9.1 - Prob. 23ECh. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - MARKET SHARE OF AUTO MANUFACTURERES In a study of...Ch. 9.1 - Prob. 27ECh. 9.1 - Prob. 28ECh. 9.1 - In Exercises 29 and 30, determine whether the...Ch. 9.1 - Prob. 30ECh. 9.1 - Prob. 1TECh. 9.1 - Prob. 2TECh. 9.1 - Prob. 3TECh. 9.1 - Prob. 4TECh. 9.2 - Prob. 1CQCh. 9.2 - Prob. 2CQCh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Prob. 17ECh. 9.2 - COMMUTER TRENDS Within a large metropolitan area,...Ch. 9.2 - Prob. 19ECh. 9.2 - PROFESSIONAL WOMEN From data compiled over a...Ch. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - NETWORK NEWS VIEWERSHIP A television poll was...Ch. 9.2 - Prob. 24ECh. 9.2 - GENETICS In a certain species of roses, a plant...Ch. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Prob. 1TECh. 9.2 - Prob. 2TECh. 9.2 - Prob. 3TECh. 9.3 - What is an absorbing stochastic matrix?Ch. 9.3 - Prob. 2CQCh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - In Exercises 9-14, rewrite each absorbing...Ch. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Prob. 25ECh. 9.3 - Prob. 26ECh. 9.3 - GAME OF CHANCE Refer to Exercise 26. Suppose Diane...Ch. 9.3 - Prob. 28ECh. 9.3 - COLLEGE GRADUATION RATE The registrar of...Ch. 9.3 - Prob. 30ECh. 9.3 - GENETICS Refer to Example 4. If the offspring are...Ch. 9.3 - Prob. 32ECh. 9.3 - Prob. 33ECh. 9.4 - a. What is the maximin strategy for the row player...Ch. 9.4 - Prob. 2CQCh. 9.4 - Prob. 1ECh. 9.4 - In Exercises 1-8, determine the maximin and...Ch. 9.4 - In Exercises 1-8, determine the maximin and...Ch. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.4 - In Exercises 1-8, determine the maximin and...Ch. 9.4 - Prob. 7ECh. 9.4 - Prob. 8ECh. 9.4 - Prob. 9ECh. 9.4 - In Exercises 9-18, determine whether the...Ch. 9.4 - In Exercises 9-18, determine whether the...Ch. 9.4 - Prob. 12ECh. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - Prob. 17ECh. 9.4 - Prob. 18ECh. 9.4 - GAME OF MATCHING FINGERS Robin and Cathy play a...Ch. 9.4 - Prob. 20ECh. 9.4 - Prob. 21ECh. 9.4 - Prob. 22ECh. 9.4 - MARKET SHARE: Rolands Barber Shop and Charleys...Ch. 9.4 - In Exercises 24-26, determine whether the...Ch. 9.4 - Prob. 25ECh. 9.4 - Prob. 26ECh. 9.5 - Prob. 1CQCh. 9.5 - Prob. 2CQCh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - In Exercises 1-6, the payoff matrix and strategies...Ch. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - The payoff matrix for a game is [332311121] a....Ch. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - Prob. 12ECh. 9.5 - In Exercises 11-16, find the optimal strategies, P...Ch. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - COIN-MATCHING GAME Consider the coin-matching game...Ch. 9.5 - INVESTMENT STRATEGIES As part of their investment...Ch. 9.5 - INVESTMENT STRATEGIES The Maxwells have decided to...Ch. 9.5 - CAMPAIGN STRATEGIES Bella Robinson and Steve...Ch. 9.5 - MARKETING STRATEGIES Two dentists, Lydia Russell...Ch. 9.5 - Prob. 22ECh. 9.5 - Prob. 23ECh. 9.CRQ - Prob. 1CRQCh. 9.CRQ - Prob. 2CRQCh. 9.CRQ - Fill in the blanks. The probabilities in a Markov...Ch. 9.CRQ - Fill in the blanks. A transition matrix associated...Ch. 9.CRQ - Prob. 5CRQCh. 9.CRQ - Prob. 6CRQCh. 9.CRQ - Prob. 7CRQCh. 9.CRQ - Prob. 8CRQCh. 9.CRQ - Prob. 9CRQCh. 9.CRQ - Prob. 10CRQCh. 9.CRE - Prob. 1CRECh. 9.CRE - Prob. 2CRECh. 9.CRE - Prob. 3CRECh. 9.CRE - Prob. 4CRECh. 9.CRE - Prob. 5CRECh. 9.CRE - Prob. 6CRECh. 9.CRE - In Exercises 7-10, determine whether the matrix is...Ch. 9.CRE - Prob. 8CRECh. 9.CRE - Prob. 9CRECh. 9.CRE - Prob. 10CRECh. 9.CRE - In Exercises 11-14, find the steady-state matrix...Ch. 9.CRE - Prob. 12CRECh. 9.CRE - Prob. 13CRECh. 9.CRE - Prob. 14CRECh. 9.CRE - Prob. 15CRECh. 9.CRE - Prob. 16CRECh. 9.CRE - Prob. 17CRECh. 9.CRE - Prob. 18CRECh. 9.CRE - Prob. 19CRECh. 9.CRE - Prob. 20CRECh. 9.CRE - Prob. 21CRECh. 9.CRE - Prob. 22CRECh. 9.CRE - Prob. 23CRECh. 9.CRE - Prob. 24CRECh. 9.CRE - Prob. 25CRECh. 9.CRE - Prob. 26CRECh. 9.CRE - Prob. 27CRECh. 9.CRE - Prob. 28CRECh. 9.CRE - Prob. 29CRECh. 9.CRE - OPTIMIZING DEMAND The management of a divison of...Ch. 9.BMO - The transition matrix for a Markov process is...Ch. 9.BMO - Prob. 2BMOCh. 9.BMO - Prob. 3BMOCh. 9.BMO - Prob. 4BMOCh. 9.BMO - The payoff matrix for a certain game is A=[213234]...Ch. 9.BMO - Prob. 6BMO
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- = A 10 kilogram object suspended from the end of a vertically hanging spring stretches the spring 9.8 centimeters. At time t = 0, the resulting mass-spring system is disturbed from its rest state by the force F(t) = 60 cos(8t). The force F(t) is expressed in Newtons and is positive in the downward direction, and time is measured in seconds. Determine the spring constant k. k = Newtons/meter help (numbers) Hint is to use earth gravity of 9.8 meters per second squared, and note that Newton is kg meter per second squared. Formulate the initial value problem for x(t), where x(t) is the displacement of the object from its equilibrium rest state, measured positive in the downward direction. Give your answer in terms of x, x',x",t. Differential equation: | help (equations) Initial conditions: x (0) = and '(0) = help (numbers) Solve the initial value problem for x(t). x(t) = ☐ help (formulas) Plot the solution and determine the maximum displacement from equilibrium made by the object on the…arrow_forwardSuppose f(x) is a continuous function that is zero when x is −1, 3, or 6 and nowhere else. Suppose we tested the function at a few points and found that ƒ(−2) 0, and f(7) < 0. Let x(t) be the solution to x' f(x) and x(0) = 1. Compute: lim x(t) help (numbers) t→∞ Book: Section 1.6 of Notes on Diffy Qsarrow_forwardConsider the initial value problem У y' = sin(x) + y(-4) = 5 4 Use Euler's Method with five steps to approximate y(-2) to at least two decimal places (but do not round intermediate results). y(-2) ≈ help (numbers) Book: Section 1.7 of Notes on Diffy Qsarrow_forward
- Consider the differential equation y' = 5y with initial condition y(0) : The actual solution is y(1) = 207.78 help (numbers) = 1.4. We wish to analyze what happens to the error when estimating y(1) via Euler's method. Start with step size h = 1 (1 step). Compute y(1) Error 8.4 help (numbers) 199.38 help (numbers) Note: Remember that the error is the absolute value! Let us half the step size to h = 0.5 (2 steps). Compute y(1) ≈ 17.15 help (numbers) Error = 190.63 help (numbers) The error went down by the factor: Error Previous error Let us half the step size to h = 0.25 (4 steps). Compute y(1) 35.88046875 help (numbers) Error = 171.90 help (numbers) help (numbers) The error went down by the factor: Error Previous error help (numbers) Euler's method is a first order method so we expect the error to go down by a factor of 0.5 each halving. Of course, that's only very approximate, so the numbers you get above are not exactly 0.5. Book: Section 1.7 of Notes on Diffy Qsarrow_forwardAnswer all the boxes and box the answers. Thank you write it downarrow_forwardChatgpt means downvote Because Chatgpt gives wrong answerarrow_forward
- Let = , -2 X(t) = [ 6° 2t e -3e -2t X(t)= 2e-2t -6e- -2t 9]. Verify that the matrix ✗(t) is a fundamental matrix of the given linear system. Determine a constant matrix C such that the given matrix Ŷ (t) can be represented as Ŷ(t) = X(t)C. C = help (matrices) The determinant of the matrix C is help (numbers) which is Choose . Therefore, the matrix ✗(t) is Choose Book: Section 3.3 of Notes on Diffy Qsarrow_forwardFind the most general real-valued solution to the linear system of differential equations + C2 7-430 help (formulas) help (matrices) [*] »B] [8]: In the phase plane, this system is best described as a source/unstable node O sink / stable node saddle center point / ellipses spiral source spiral sink none of these Book: Section 3.5 of Notes on Diffy Qsarrow_forwardFind the most general real-valued solution to the linear system of differential equations x x(t) y(t) = +C2 [*] [] [B] In the phase plane, this system is best described as a source/unstable node sink/stable node saddle center point / ellipses spiral source spiral sink none of these Book: Section 3.5 of Notes on Diffy Qs help (formulas) help (matrices)arrow_forward
- Find the most general real-valued solution to the linear system of differential equations x(t) -9 8' [J - j (-8-8 y(t) In the phase plane, this system is best described as a source/unstable node sink/stable node saddle center point / ellipses spiral source spiral sink none of these Book: Section 3.5 of Notes on Diffy Qs -12 11 help (formulas) help (matrices)arrow_forwardFind the most general real-valued solution to the linear system of differential equations x(t) -2 7-730 --8-8 y(t) = In the phase plane, this system is best described as a source/unstable node sink / stable node saddle center point / ellipses spiral source spiral sink ☐ none of these Book: Section 3.5 of Notes on Diffy Qs 1 help (formulas) help (matrices)arrow_forwardConsider the system of differential equations dx 8 3 x Y dt 4 -- (0) + (1) (음)- (0) dy 18 y. dt For this system, the eigenvalues are help (numbers) Enter as a comma separated list. How do the solution curves of the system above behave? All of the solutions curves would converge towards 0 (sink/stable node). All of the solution curves would run away from 0 (source/unstable node). The solution curves would race towards zero and then veer away towards infinity (saddle point). The solution curves converge to different points. The solution to the above differential equation with initial values x(0) = 5, y(0) = 3 is x(t) = help (formulas) y(t) = help (formulas) Book: Section 3.5 of Notes on Diffy Qsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Probability & Statistics (28 of 62) Basic Definitions and Symbols Summarized; Author: Michel van Biezen;https://www.youtube.com/watch?v=21V9WBJLAL8;License: Standard YouTube License, CC-BY
Introduction to Probability, Basic Overview - Sample Space, & Tree Diagrams; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=SkidyDQuupA;License: Standard YouTube License, CC-BY