FINITE MATH.F/MGRL....(LL)>CUSTOM PKG.<
11th Edition
ISBN: 9781337496094
Author: Tan
Publisher: CENGAGE C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.CRE, Problem 4CRE
To determine
Whether the matrix
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine if P =
.8
.2
1
is a regular stochastic matrix.
Determine if the following matrix is a regular stochastic matrix. *
1
P =
.2
.8
O False
True
O No Idea
Let us consider the population of people living in a city and its suburb and the migration within this population
from the city and the suburbs to the city and the suburbs. The migration of these populations from and to
each other is given by a stochastic matrix
[.95 .03]
P =
|.05 .97
The entries in this matrix were obtained from collected data that demonstrates individuals are 95 % likely to
remain in the city, 5 % likely to move from the city to the suburbs, 3 % likely to move from the suburbs to
the city, and 97 % likely to remain in the suburbs.
Now suppose in the year 2000 60 % or .6 percent of people live in the city and 40 % or .4 percent of people
live in the suburbs. What will be the percentage of people living in the city be in the year 2001? What will
be the percentage of people living in the suburbs be in 2002?
Hint: Recall, for a general Markov Chain (S, ro, P) the initial vector ro is required to merely be a probability
vector, that is, a vector whose entries add up to 1.…
Chapter 9 Solutions
FINITE MATH.F/MGRL....(LL)>CUSTOM PKG.<
Ch. 9.1 - What is a finite stochastic process? What can you...Ch. 9.1 - Prob. 2CQCh. 9.1 - Consider a transition matrix T for a Markov chain...Ch. 9.1 - Prob. 1ECh. 9.1 - Prob. 2ECh. 9.1 - Prob. 3ECh. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Prob. 6ECh. 9.1 - Prob. 7E
Ch. 9.1 - Prob. 8ECh. 9.1 - Prob. 9ECh. 9.1 - In Exercises 1-10, determine which of the matrices...Ch. 9.1 - Prob. 11ECh. 9.1 - Prob. 12ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - In Exercises 1518, find X2 the probability...Ch. 9.1 - Prob. 17ECh. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - Prob. 20ECh. 9.1 - Political Polls: Morris Polling conducted a poll 6...Ch. 9.1 - Commuter Trends: In a large metropolitan area, 20...Ch. 9.1 - Prob. 23ECh. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - MARKET SHARE OF AUTO MANUFACTURERES In a study of...Ch. 9.1 - Prob. 27ECh. 9.1 - Prob. 28ECh. 9.1 - In Exercises 29 and 30, determine whether the...Ch. 9.1 - Prob. 30ECh. 9.1 - Prob. 1TECh. 9.1 - Prob. 2TECh. 9.1 - Prob. 3TECh. 9.1 - Prob. 4TECh. 9.2 - Prob. 1CQCh. 9.2 - Prob. 2CQCh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Prob. 17ECh. 9.2 - COMMUTER TRENDS Within a large metropolitan area,...Ch. 9.2 - Prob. 19ECh. 9.2 - PROFESSIONAL WOMEN From data compiled over a...Ch. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - NETWORK NEWS VIEWERSHIP A television poll was...Ch. 9.2 - Prob. 24ECh. 9.2 - GENETICS In a certain species of roses, a plant...Ch. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Prob. 1TECh. 9.2 - Prob. 2TECh. 9.2 - Prob. 3TECh. 9.3 - What is an absorbing stochastic matrix?Ch. 9.3 - Prob. 2CQCh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - In Exercises 9-14, rewrite each absorbing...Ch. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Prob. 25ECh. 9.3 - Prob. 26ECh. 9.3 - GAME OF CHANCE Refer to Exercise 26. Suppose Diane...Ch. 9.3 - Prob. 28ECh. 9.3 - COLLEGE GRADUATION RATE The registrar of...Ch. 9.3 - Prob. 30ECh. 9.3 - GENETICS Refer to Example 4. If the offspring are...Ch. 9.3 - Prob. 32ECh. 9.3 - Prob. 33ECh. 9.4 - a. What is the maximin strategy for the row player...Ch. 9.4 - Prob. 2CQCh. 9.4 - Prob. 1ECh. 9.4 - In Exercises 1-8, determine the maximin and...Ch. 9.4 - In Exercises 1-8, determine the maximin and...Ch. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.4 - In Exercises 1-8, determine the maximin and...Ch. 9.4 - Prob. 7ECh. 9.4 - Prob. 8ECh. 9.4 - Prob. 9ECh. 9.4 - In Exercises 9-18, determine whether the...Ch. 9.4 - In Exercises 9-18, determine whether the...Ch. 9.4 - Prob. 12ECh. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - Prob. 17ECh. 9.4 - Prob. 18ECh. 9.4 - GAME OF MATCHING FINGERS Robin and Cathy play a...Ch. 9.4 - Prob. 20ECh. 9.4 - Prob. 21ECh. 9.4 - Prob. 22ECh. 9.4 - MARKET SHARE: Rolands Barber Shop and Charleys...Ch. 9.4 - In Exercises 24-26, determine whether the...Ch. 9.4 - Prob. 25ECh. 9.4 - Prob. 26ECh. 9.5 - Prob. 1CQCh. 9.5 - Prob. 2CQCh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - In Exercises 1-6, the payoff matrix and strategies...Ch. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - The payoff matrix for a game is [332311121] a....Ch. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - Prob. 12ECh. 9.5 - In Exercises 11-16, find the optimal strategies, P...Ch. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - COIN-MATCHING GAME Consider the coin-matching game...Ch. 9.5 - INVESTMENT STRATEGIES As part of their investment...Ch. 9.5 - INVESTMENT STRATEGIES The Maxwells have decided to...Ch. 9.5 - CAMPAIGN STRATEGIES Bella Robinson and Steve...Ch. 9.5 - MARKETING STRATEGIES Two dentists, Lydia Russell...Ch. 9.5 - Prob. 22ECh. 9.5 - Prob. 23ECh. 9.CRQ - Prob. 1CRQCh. 9.CRQ - Prob. 2CRQCh. 9.CRQ - Fill in the blanks. The probabilities in a Markov...Ch. 9.CRQ - Fill in the blanks. A transition matrix associated...Ch. 9.CRQ - Prob. 5CRQCh. 9.CRQ - Prob. 6CRQCh. 9.CRQ - Prob. 7CRQCh. 9.CRQ - Prob. 8CRQCh. 9.CRQ - Prob. 9CRQCh. 9.CRQ - Prob. 10CRQCh. 9.CRE - Prob. 1CRECh. 9.CRE - Prob. 2CRECh. 9.CRE - Prob. 3CRECh. 9.CRE - Prob. 4CRECh. 9.CRE - Prob. 5CRECh. 9.CRE - Prob. 6CRECh. 9.CRE - In Exercises 7-10, determine whether the matrix is...Ch. 9.CRE - Prob. 8CRECh. 9.CRE - Prob. 9CRECh. 9.CRE - Prob. 10CRECh. 9.CRE - In Exercises 11-14, find the steady-state matrix...Ch. 9.CRE - Prob. 12CRECh. 9.CRE - Prob. 13CRECh. 9.CRE - Prob. 14CRECh. 9.CRE - Prob. 15CRECh. 9.CRE - Prob. 16CRECh. 9.CRE - Prob. 17CRECh. 9.CRE - Prob. 18CRECh. 9.CRE - Prob. 19CRECh. 9.CRE - Prob. 20CRECh. 9.CRE - Prob. 21CRECh. 9.CRE - Prob. 22CRECh. 9.CRE - Prob. 23CRECh. 9.CRE - Prob. 24CRECh. 9.CRE - Prob. 25CRECh. 9.CRE - Prob. 26CRECh. 9.CRE - Prob. 27CRECh. 9.CRE - Prob. 28CRECh. 9.CRE - Prob. 29CRECh. 9.CRE - OPTIMIZING DEMAND The management of a divison of...Ch. 9.BMO - The transition matrix for a Markov process is...Ch. 9.BMO - Prob. 2BMOCh. 9.BMO - Prob. 3BMOCh. 9.BMO - Prob. 4BMOCh. 9.BMO - The payoff matrix for a certain game is A=[213234]...Ch. 9.BMO - Prob. 6BMO
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Explain how you can determine the steady state matrix X of an absorbing Markov chain by inspection.arrow_forwardDetermine whether the matrix is stochastic. [0.3 0.5 0.21 0.7 0.1 0.2 [0.1 0.1 0.8 O stochastic O not stochasticarrow_forwardIf possible, fill in the missing values to make A a doubly stochastic matrix. (If not possible, enter IMPOSSIBLE.) - [ 0.3 a = b = A = a 0.3 X Xarrow_forward
- A medical researcher is studying the spread of a virusin a population of 1000 laboratory mice. During any week, there is an 80%probability that an infected mouse will overcome the virus, and during thesame week there is a 10% probability that a noninfected mouse will becomeinfected. Three hundred mice are currently infected with the virus. Pleaseanswer the following.1. What is the stochastic matrix that models this process?2. Compute how many mice will be infected next week.3. Compute how many mice will be infected in 3 weeks.4. Compute the steady-state matrix for this process.5. In the steady-state, how many mice are healthy and how many areinfected?arrow_forward1 .2° is a regular stochastic matrix. 10. Determine if P 0.8arrow_forwardSelect all the possible values of aa which makes AA stochastic.arrow_forward
- Q18. Suppose M is a stochastic matrix representing the probabilities of transitions each day. Compute the matrix of compounded transition probabilities for 2 days into the future, or M². (Note, prior to multiplying matrices, the given components of M must be used to fill in the missing component [**] such that M is a stochastic matrix.) M = 0.80 0.14 0.06 0.07 0.33 Your Answer: ** 0.35 0.41 0.24 What is m32 in the matrix M²? (Round to 3 decimal places.)arrow_forwardS be the 1 x n row matrix with a 1 in each column, S = [1 1 a. Explain why a vector x in TR" is a probability vector if and only if its entries are nonnegative and Sx = 1. (A 1 × 1 matrix such as the product Sx is usually written without the matrix bracket symbols.) b. Let P be an n xn stochastic matrix. Explain why SP = S. 1] c. Let P be an n x n stochastic matrix, and let x be a probability vector. Show that Px is also a probability vector.arrow_forwardQ17. Suppose M is a stochastic matrix representing the probabilities of transitions each month. Compute the matrix of compounded transition probabilities for 3 months into the future, or M³. (Note, prior to multiplying matrices, the given components of M must be used to fill in the missing components [**] such that M is a stochastic matrix.) = M-[ What is m22 in the matrix M³? (Round to 3 decimal places.) 0.60 ** ** 0.60arrow_forward
- Dear expert don't Use chat gpt plz It Don't copy pastearrow_forwardWhat is the second row of the matrix A, if A is stochastic? Second row: 0.8 The steady state vector for A is If v= 0.5 [15] 26 then Av approaches as n gets large. A = [0.2 ? 0.5] ?arrow_forwardQ16. Suppose M is a stochastic matrix representing the probabilities of transitions each day. Use the given components of M to fill in the missing component [**] such that M is a stochastic matrix. M = 0.80 0.14 0.06 0.07 0.71 ** 0.35 0.41 0.24 What is the missing component in the matrix M? (Enter probability to 2 decimal places.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Sampling Methods and Bias with Surveys: Crash Course Statistics #10; Author: CrashCourse;https://www.youtube.com/watch?v=Rf-fIpB4D50;License: Standard YouTube License, CC-BY
Statistics: Sampling Methods; Author: Mathispower4u;https://www.youtube.com/watch?v=s6ApdTvgvOs;License: Standard YouTube License, CC-BY